Recovering Low Frequencies For Impedance Inversion By Frequency Domain Deconvolution

Sina Esmaeili

Supervisor: Gary Frank Margrave

Outline

- Modeling of seismic trace
- Impedance inversion and estimation of reflectivity
- Frequency domain deconvolution
- Spectral white reflectivity estimation (random reflectivity)
- Spectral color reflectivity estimation (well log data)
- Impedance inversion results
- Conclusion

Modeling the Seismic trace

Convolutional Model: $S(t) = r(t) \cdot w(t)$

In frequency domain

Impedance Inversion

In homogenous medium for normal incident wavelet the reflection coefficient can be written as:

$$r_n = \frac{I_{n+1} - I_n}{I_{n+1} + I_n} \begin{cases} I = \\ I_n \\ I_{n+1} \end{cases}$$

= $v\rho$ Acoustic Impedance

Acoustic Impedance of layer nth

Acoustic Impedance of layer (n+1)th

$$I_{n+1} = I_n \left(\frac{1+r_n}{1-r_n}\right) = I_1 \prod_{i=1}^n \left(\frac{1+r_i}{1-r_i}\right) \approx I_1 \exp\left(2\sum_{i=1}^n r_i\right)$$

How to estimate the reflectivity?

We can define d(t) as:

 $S(t) = r(t) \bullet w(t)$

"d" is the perfect deconvolution operator

$$w(t) \bullet d(t) = \delta(t) \implies d(t) = w^{-1}(t) \quad \text{(II)}$$
$$r(t) = s(t) \bullet d(t)$$

In practice, because of the **band-limited** nature of the wavelet, it is impossible to find d(t) which makes the right hand side of equation (II) equal to a delta function.

$$w(t) \bullet d(t) = w_d(t) \qquad r(t) \neq S_d(t)$$
$$s_d(t) = r(t) \bullet w_d(t) \qquad (t)$$

Deconvolution

- In mathematics, deconvolution is an algorithmbased process which is used to reverse the effects of convolution on the recorded data
- Deconvolution must estimate the wavelet from the data
- Amplitude spectrum of wavelet estimated by smoothing data amplitude spectrum.
- All spectral shape is attributed to the wavelet (white reflectivity assumption)

Frequency Domain Deconvolution

The assumptions:

- The wavelet should be minimum phase
- The wavelet spectrum should be smooth
- The wavelet should be stationary
- The reflectivity should be random so it has a white spectrum

Adding the noise to seismogram:

$$s(t) = r(t) \cdot w(t) + n(t)$$
$$S(f) = R(f)W(f) + N(f)$$

Frequency Domain Deconvolution

Then the estimated wavelet is defined as:

By comparing with:

$$w(f)\Big|_{estimated} = \overline{|S(f)|}$$

$$|D(f)| = |W(f)|^{-1}_{estimated} = \overline{|S(f)|}^{-1}$$

$$r(t) = s(t) \cdot w^{-1}(t)$$

Deconvolution operator can be defined as (Margrave, 2002):

$$D(f) = \frac{1}{|W(f)|_{est} + \mu A_{\max}} e^{i\phi_D(f)} \begin{cases} A_{\max} = \max(|W(f)|_{est}) \\ \phi_D(f) = H(\ln(|D(f)|)) \\ 0.01 < \mu < 0.000001 \end{cases}$$

Estimated wavelet

$$S(f)D(f) = R(f)W(f)D(f) = R(f)W_D(f)$$
$$W_D(f) = W(f)D(f) = \frac{W(f)}{|W(f)|_{est} + \mu A_{max}}e^{i\phi_D(f)}$$

Missing High and Low Frequencies

Missing high frequency causes reduced resolution Missing low frequency causes reduced trend of data

Frequency Domain Deconvolution (Old Version)

Deconvolution of noise free and noisy seismogram

How possible to improve?

Improving the process of smoothing amplitude spectrum of seismic trace for estimating wavelet

Applying spectral color operator to Deconvolved data

Deconvolution with new smoothing

Inverted Impedance for random reflectivity

Real well log data

• The Real Data: Sonic and Density logs from the well 12-27 near Hussar

Location of the well 12-27 area near Hussar, Alberta, Canada indicated by the red marker

Spectral color reflectivity

The Synthetic Seismic Trace

0.03 0.02 In time domain: 0.01 Impedance -0.01 -0.02 -0.03 0.2 0.8 0.1 0.3 0.4 0.5 0.6 0.7 0.9 Time (Sec) Reflectivity In frequency domain: Synthetic seismic trace -10 Wavelet -2 -31 decibels -40 -50 -60 -70 -80 0 50 100 150 200 350 400 450 500 250 300

1-D Synthetic Seismic Trace In Time Domain

Frequency (Hz)

Adding Noise To Data

Spectral Color Operator

Applying Operator To Data

Noise free case:

Final Results In Time Domain

Impedance Inversion for noise-free seismogram

Impedance Inversion for noise-free seismogram

Impedance Inversion for noisy seismogram

Impedance Inversion for noisy seismogram

Conclusion

- The bandlimited nature of wavelet and also noise contamination causes the missing low and high frequency in recorded data.
- The better seismic data smoothing, the more realistic reflectivity estimation we can reach.
- The colored spectrum of low frequencies data could be recovered by spectral color operator.
- Acoustic impedance can be estimated much precisely if the low frequency can be recovered from seismic data.
- For the future work real recorded seismic data will be used

Acknowledgement

- Dr. Gary Margrave
- Sponsors of CREWES
- All the students and staffs in CREWES