Analysis of well tying: The influence of attenuation and Gabor deconvolution

Tianci Cui and Gary F. Margrave

Gabor decon avoiding the nonstationary catastrophe

Phase rotation analysis Inverse Q+deconw compared to Gabor decon

Outline

- Tie synthetic reflectivity to nonstationary trace model Estimate the propagating wavelets
- Tie well reflectivity to nonstationary trace model Estimate the residual drift time
- Conclusions and future work

Outline

- Tie synthetic reflectivity to nonstationary trace model Estimate the propagating wavelets
- Tie well reflectivity to nonstationary trace model Estimate the residual drift time
- Conclusions and future work

Stationary trace: s

CREWES

UNIVERSITY OF

Nonstationary trace: sn

UNIVERSITY OF 7

CALGAR

(Margrave, Lamoureux and Henley, 2011)

Propagating wavelet estimation

propagating wavelets

Propagating wavelet estimation

Estimated wavelets are too early

Amplitude spectra (normalized)

Estimated amplitude spectra are accurate

Phase spectra (unwrapped)

Estimated phase spectra are inaccurate

Why phase estimation is inaccurate

Propagating wavelet

$$\emptyset(f) = -\frac{1}{\pi} \int_{-f_{NYQ}}^{f_{NYQ}} \frac{\ln A(\tilde{f})}{f - \tilde{f}} d\tilde{f}$$

Remodel the constant-Q impulse response with respect to the Nyquist frequency

Constant-Q impulse response Phase= $-\frac{2\pi fx}{V_0}(1-\frac{1}{\pi Q}ln\frac{f_s}{f_0})$ $f_0=250$ Hz

Remodel Q wavelets W.R.T. f_{NYQ}

Q wavelets are less delayed

Propagating wavelet estimation

propagating wavelets

Remodel Q wavelets W.R.T. f_{NYQ}

Timing is consistent

Phase spectra (unwrapped)

Estimated phase spectra are inaccurate

Remodel Q wavelets W.R.T. f_{NYQ}

Estimated phase spectra are consistent with Q wavelets ($f_0 = f_{NYO}$)

Outline

- Tie synthetic reflectivity to nonstationary trace model Estimate the nonstationary wavelets
- Tie well reflectivity to nonstationary trace model Estimate the residual drift time
- Conclusions and future work

Well logs and hypothetical Q

Reflectivity and seismic traces

Traces after Gabor decon V.S. reflectivity

Traces after Gabor decon V.S. reflectivity

$sn(f_0=f_{NYQ})$ after Gabor decon V.S. reflectivity

Events are tied with reflectivity

$sn(f_0=f_W)$ after Gabor decon V.S. reflectivity

Events are not tied

Traces after Gabor decon V.S. reflectivity

Dynamic time warping

Theoretical drift time

 $sn(f_0=f_w)$ residual drift time is the difference

Drift time correction

Drift time correction

Before drift time correction

Events are not tied

After drift time correction

Events are tied

Conclusions

- Gabor deconvolution accurately estimates the amplitude spectra of the propagating wavelets due to the constant-Q attenuation.
- Gabor deconvolution calculates the phase spectra of the propagating wavelets by the Hilbert transform, which integrates within the seismic frequency band and corrects the drift time to the Nyquist frequency only.

- Include noise in the seismic trace model.
- Test nonstationary wavelet estimation and drift time estimation on the field VSP dataset.
- Improve Gabor deconvolution by correcting the phase error.

Acknowledgements

- CREWES sponsors
- NSERC: grant CRDPJ 379744-08
- CREWES staff and students

THANK YOU !

51