

Repercussions of available long offset, random noise and impedance contrast on AVO analysis

Sergio Romahn 30/Oct/2015

- ✓ Introduction
 - Motivations
 - Geological target
 - Fluid replacement modelling
 - Vertical seismic resolution
 - AVO modelling using Zoeppritz equations
- ✓ Effect of random noise keeping maximum offset constant
- ✓ Quantifying the error
- ✓ Effect of reducing offset keeping noise constant
- ✓ Simultaneous effect of reducing offset and varying level of noise
- ✓ Conclusions and future work

Motivations

- How to meet the large offset requirement when designing a seismic survey for AVO analysis
- If we already have a seismic data set, is it suitable for AVO analysis?

Geological target

Introduction

Depth of reservoir =2280 m

Light oil (38 api)

Fluid replacement modeling

Introduction

Gas produces a significant decrement of P-wave velocity and density , and a subtle increase in S-wave velocity.

Water produces the opposite change; P-wave velocity and density rise, while S-wave velocity slightly falls.

Vertical seismic resolution

Introduction

Reflection coefficient vs angle of incidence Zoeppritz equations

Introduction

Oc=critical angle

Reflection coefficient vs angle of incidence Zoeppritz equations

Introduction

Pre-critical angles up to 45 degrees were used for this experiment

Oc=critical angle

Reflection coefficient vs angle of incidence Zoeppritz equations

Introduction

t V_{rms}

Oc=critical angle

Тор

AVO modelling Amplitude vs angle of incidence

Introduction

AVO modelling Amplitude vs angle of incidence

Introduction

Max. Angle=45 No noise

Introduction

-		ТОР			BASE				
	Intercept	Gradient	Curvature	Intercept	Gradient	Curvature			
GAS	-0.023	-0.021	-0.010	0.028	0.022	0.024			
OIL	-0.014	-0.017	-0.007	0.018	0.016	0.013			
WATER	-0.005	-0.012	-0.004	0.009	0.010	0.007			

Intercept

 $R_P(\theta) = R_{AI} + G\sin^2\theta + R_{VP}\sin^2\theta\tan^2\theta$ Wiggins et al (1983) Russell and Hampson(2006) Curvature

Gradient

AVO analysis

Effect of varying level of noise keeping maximum angle constant

AVO analysis

Reference to measure the error 🗌			ТОР			BASE	
Newsies		Intercept	Gradient	Curvature	Intercept	Gradient	Curvature
No noise	GAS	-0.023	-0.021	-0.010	0.028	0.022	0.024
Max. angle: 45 deg	OIL	-0.014	-0.017	-0.007	0.018	0.016	0.013
0 0	WATER	-0.005	-0.012	-0.004	0.009	0.010	0.007

Reference to measure the error			ТОР			BASE	
		Intercept	Gradient	Curvature	Intercept	Gradient	Curvature
No noise	GAS	-0.023	-0.021	-0.010	0.028	0.022	0.024
Max. angle: 45 deg	OIL	-0.014	-0.017	-0.007	0.018	0.016	0.013
	WATER	-0.005	-0.012	-0.004	0.009	0.010	0.007

S/N=2 Max. Angle=45 deg.

Reference to measure the error			ТОР			BASE	
Neuroine		Intercept	Gradient	Curvature	Intercept	Gradient	Curvature
No noise	GAS	-0.023	-0.021	-0.010	0.028	0.022	0.024
Max. angle: 45 deg	OIL	-0.014	-0.017	-0.007	0.018	0.016	0.013
	WATER	-0.005	-0.012	-0.004	0.009	0.010	0.007

S/N=2 Max. Angle=45 deg.

Reference to measure the error			ТОР			BASE	
	_	Intercept	Gradient	Curvature	Intercept	Gradient	Curvature
No noise	GAS	-0.023	-0.021	-0.010	0.028	0.022	0.024
Max. angle: 45 deg	OIL	-0.014	-0.017	-0.007	0.018	0.016	0.013
	WATER	-0.005	-0.012	-0.004	0.009	0.010	0.007

Reference to measure the error			ТОР			BASE	
		Intercept	Gradient	Curvature	Intercept	Gradient	Curvature
Nonoise	GAS	-0.023	-0.021	-0.010	0.028	0.022	0.024
Max. angle: 45 deg	OIL	-0.014	-0.017	-0.007	0.018	0.016	0.013
	WATER	-0.005	-0.012	-0.004	0.009	0.010	0.007

S/N=2 Max. Angle=45 deg.

Reference to measure the error			ТОР			BASE	
Neuroine		Intercept	Gradient	Curvature	Intercept	Gradient	Curvature
No noise	GAS	-0.023	-0.021	-0.010	0.028	0.022	0.024
Max. angle: 45 deg	OIL	-0.014	-0.017	-0.007	0.018	0.016	0.013
	WATER	-0.005	-0.012	-0.004	0.009	0.010	0.007

S/N=2 Max. Angle=45 deg.

Reference to measure the error			ТОР			BASE	
		Intercept	Gradient	Curvature	Intercept	Gradient	Curvature
No noise	GAS	-0.023	-0.021	-0.010	0.028	0.022	0.024
Max. angle: 45 deg	OIL	-0.014	-0.017	-0.007	0.018	0.016	0.013
0 0	WATER	-0.005	-0.012	-0.004	0.009	0.010	0.007

GAS-error

OIL-error

WATER-error

The error increases as the impedance contrast decreases

AVO analysis

Max. Angle=45 S/N=12

Max. Angle=40 S/N=12

Max. Angle=35 S/N=12

Max. Angle=30 S/N=12

Max. Angle=25 S/N=12

Max. Angle=20 S/N=12

Max. Angle=15 S/N=12

GAS-error

The parameter estimation becomes unstable with errors higher than 20%

OIL-error

Effect of reducing angle of incidence keeping noise constant

WATER-error

The parameter estimation becomes unstable with errors higher than 20%

Effect of reducing angle of incidence keeping noise constant

WATER-error

The error increases as the impedance contrast decreases

AVO analysis

Simultaneous effect of reducing angle of incidence and varying level of noise

Conclusions

- Random noise and available long offset are variables that affect the estimation of AVOparameters.
- The intercept is practically not affected by reducing offset and slightly affected by random noise.
- The gradient and curvature are strongly impacted by both noise and maximum available offset.
- The error tends to be higher if the target has low impedance contrast.
- Long offsets provide stability when fitting the amplitude vs angle points in the presence of noise
- This methodology can be used to check the feasibility of applying AVO analysis with old seismic data or for deciding the maximum offset in new seismic surveys. This information may be useful when designing a seismic survey for monitoring changes of fluids in time-lapse studies.

Future work

- Investigate the effect of other factors such as: different noise distributions, changing the thickness of the reservoir and attenuation
- Incorporate AVO information in full waveform inversion

Acknowledgements

Kris Inannen CREWES sponsors CREWES staff and students PEMEX

END