Influence of colour operator on Hussar data

SINA ESMAEILI*

G. F. MARGRAVE

Outline

Motivation:

Why the low frequencies are so important? Why we need colour operator?

- Defining different colour operators
- The effect of color operators on real seismic data
- Impedance inversion results
- Coloured inversion method
- Conclusion
- Acknowledgment

Simple model

Synthetic data

Deconvolving

Impedance inversion (recursion formula) $I_n = I_1 \prod_{i=1}^n (e^{2R_j}) = I_1 e^{2\sum_{j=1}^n (R_j)}$

Amplitude spectrum

Taking the low frequencies from the impedance model (e.g. well info)

Well log data

The synthetic data created from well log data

Deconvolving

Impedance inversion (recursion formula)

Amplitude spectrum

Amplitude spectrum

AutoCorrelation (AC) Colour operator The phase spectrum calculated to be minimum phase.

Esmaeili, S., & Margrave, G. F. (2014). The optimum colour operator for recovering low frequencies. CREWES Research Report, Vol. 26.

- Esmaeili, S., & Margrave, G. F. (2014). The optimum colour operator for recovering low frequencies. CREWES Research Report, Vol. 26.
- Its amplitude spectrum calculated from Curve fitting on amplitude spectrum of well reflectivity.
- The phase spectrum calculated to be minimum phase.

- Esmaeili, S., & Margrave, G. F. (2014). The optimum colour operator for recovering low frequencies. CREWES Research Report, Vol. 26.
- Its amplitude spectrum calculated from Curve fitting on amplitude spectrum of well reflectivity.
- The phase spectrum calculated to be minimum phase.

- Esmaeili, S., & Margrave, G. F. (2014). The optimum colour operator for recovering low frequencies. CREWES Research Report, Vol. 26.
- Its amplitude spectrum calculated from Curve fitting on amplitude spectrum of well reflectivity.
- The phase spectrum calculated to be minimum phase.

Hussar Seismic data

- In September 2011 CREWES initiated a seismic experiment.
- Located near Hussar, Alberta.
- ▶ The line was 4.5km.
- Three wells: 14-35, 14-27 and 12-27.

Lloyd, H. J., E,. An investigation of the role of low frequencies in seismic impedance inversion. thesis, University of Calgary, 2013

Hussar Seismic data:

Time variant balanced + Flattened

Tying synthetic data on seismic

Tying synthetic data on seismic: Time shift + time stretch

Applying colour operator

- For each well, different time-domain colour operators have been calculated. These assume that the seismic data has been whitened by deconvolution.
- Each trace has a unique colour operator computed by spatial interpolation from the well operators.
- The coloured seismic section can be calculated via convolution of each trace with its colour operator.

Arctan colour operator

Amplitude spectrum

Sigmoidal colour operator

Impedance inversion:

Just using recursion formula

Impedance inversion (BLIMP)

Coloured inversion method

- Lancaster, S., & Whitcombe, D. (2000). Fast-track 'coloured' inversion. SEG Technical Program Expanded Abstracts 2000.
- The trend of acoustic impedance spectra can be easily described as f^{α} .
- If the α can be found for a field by curve-fitting to Al logs then the amplitude spectrum of the inversion operator is determined as being that which maps the seismic spectrum to a curve of form f^{α} .

Coloured inversion

Figure 4: Four AI logs from a North Sea field are displayed on a log-frequency axis to demonstrate the linear trend, equivalently exponential on a linear frequency axis. The gradient of the linear fit determines α .

Figure 5: Comparison of the matching operator (pink) and the Coloured Inversion operator (dark blue).

Coloured inversion for Hussar data

Using:

- Mean well impedance
- Mean seismic trace

Coloured inversion vs. -90° phase rotation

The maximum correlation between estimated impedance and well impedance (frequency range: 14Hz-60Hz)

Conclusion

- Accurate acoustic impedance estimation requires low frequencies from well logs.
- A deconvolved trace shaped to a white spectrum can be corrected by applying a minimum-phase color operator after deconvolution.
- The result of impedance inversion is greatly improved after applying color correction because this affects the low frequencies and therefore the trend of the inversion.
- The coloured inversion method is a fast and robust technique to calculate the deviation of acoustic impedance from background trend (e.g. no low frequency information) and it is similar to a -90 degree phase rotation.

Acknowledgment

► All CREWES sponsors

► NSERC

CREWES staff and students