



# Crustal tomography of the Pyrenees and surrounding regions using ambient noise correlation

Marie MACQUET CREWES Tech talk - March 4<sup>th</sup>, 2016

# outline

# Introduction

- 2 Group velocity model
- 3-D Swave velocity model
- 4 Monitoring with seismic ambient noise
- Conclusions
- 6 Acknowledgements

| Introduction<br>00000 | Group velocities<br>00000 | Swave velocity<br>0000000 | Monitoring<br>00 | Conclusions | Acknowledgements |  |
|-----------------------|---------------------------|---------------------------|------------------|-------------|------------------|--|
| Study Ar              | rea                       |                           |                  |             |                  |  |



| Introduction<br>00000 | Group velocities<br>00000 | Swave velocity<br>0000000 | Monitoring<br>00 | Conclusions | Acknowledgements |
|-----------------------|---------------------------|---------------------------|------------------|-------------|------------------|
| Study A               | rea                       |                           |                  |             |                  |



#### Sedimentary basins

- Aquitaine basin (AB)
- Ebro Basin (EB)
- Duero Basin (DB)
- Southeastern basin (SB)

#### **Mountain Belts**

- Pyrenees (AZ)
- Massif Central (MC)
- Cantabrian mountains (CM)
- Armorican Massif (AM)



Rotation of the Iberian plate

# Extensional phase before collisional phase



Mouthereau et al., 2014

Geodynamical history can be constrain by structural geology, geochemistry, paleomagnetism, geophysical studies, as gravimetry and **seismic imaging** 



#### Aim : Obtain a 3-D $V_S$ crustal model of the region



 $\Rightarrow$  158 broadband stations, average spacing of 60km.



Ambient noise correlation - Principle

 $\Rightarrow$  We can reconstruct of the Green function between 2 stations by correlating the continuous signal (Weaver et Lobkis (2001); Shapiro and Campillo (2004))



Shapiro and Canpillo (2004)



# Ambient noise correlation vs "classical" method



12403 potential paths

2011-2013 : 361 EQs inside the area 69 EQs with magnitude > 3.5



- 2 Group velocity model
- 3 -D Swave velocity model
- 4 Monitoring with seismic ambient noise
- 5 Conclusions
- 6 Acknowledgements

| Introduction<br>00000 | Group velocities<br>●0000 | Swave velocity<br>0000000 | Monitoring<br>00 | Conclusions | Acknowledgements |
|-----------------------|---------------------------|---------------------------|------------------|-------------|------------------|
| Noise co              | rrelation ap              | plication                 |                  |             |                  |

#### "classic" processing

- deconvolution of the instrument responses
- in 3 frequency ranges :
  - time normalization : 1-bit processing
  - Spectral normalization : whitening

### Particularity of this study (February-December 2011) : Tohoku-Oki Earthquake and the many aftershocks

| Introduction<br>00000 | Group velocities<br>●0000 | <i>S</i> wave velocity<br>0000000 | Monitoring<br>00 | Conclusions | Acknowledgements |
|-----------------------|---------------------------|-----------------------------------|------------------|-------------|------------------|
| Noise cor             | relation ap               | plication                         |                  |             |                  |

#### "classic" processing

- deconvolution of the instrument responses
- in 3 frequency ranges :
  - time normalization : 1-bit processing
  - Spectral normalization : whitening

### [5-30]s; [20-40]s; [30-55]s. to overpass the effect of the 1-bit filtering

| Introduction | Group velocities | Swave velocity | Monitoring | Conclusions | Acknowledgements |
|--------------|------------------|----------------|------------|-------------|------------------|
| 00000        | 00000            | 0000000        | 00         |             |                  |
|              |                  |                |            |             |                  |

# Noise correlation application

#### "classic" processing

- deconvolution of the instrument responses
- in 3 frequency ranges :
  - time normalization : 1-bit processing
  - Spectral normalization : whitening



| Introduction | Group velocities | Swave velocity | Monitoring | Conclusions | Acknowledgements |
|--------------|------------------|----------------|------------|-------------|------------------|
| 00000        | 00000            | 0000000        | 00         |             |                  |
|              |                  |                |            |             |                  |

### Noise correlation application

#### "classic" processing

- deconvolution of the instrument responses
- in 3 frequency ranges :
  - time normalization : 1-bit processing
  - Spectral normalization : whitening





| Introduction<br>00000 | Group velocities<br>○○●○○ | Swave velocity<br>0000000 | Monitoring<br>00 | Conclusions | Acknowledgements |
|-----------------------|---------------------------|---------------------------|------------------|-------------|------------------|
| Dispersio             | on curves                 |                           |                  |             |                  |

• ZZ correlations : emergence of the Rayleigh wave



• Surface waves are dispersive : we can calculate the dispersion curve of the group velocities by FTAN

| Introduction<br>00000 | Group velocities<br>00000 | Swave velocity<br>0000000 | Monitoring<br>00 | Conclusions | Acknowledgements |
|-----------------------|---------------------------|---------------------------|------------------|-------------|------------------|
| Group v               | elocities ma              | ps                        |                  |             |                  |



| Introduction | Group velocities | Swave velocity | Monitoring | Conclusions | Acknowledgements |
|--------------|------------------|----------------|------------|-------------|------------------|
| 00000        | 00000            | 0000000        | 00         |             |                  |
|              |                  |                |            |             |                  |

# Group velocity maps - Results





- 2 Group velocity model
- 3-D Swave velocity model



Major problem : non uniqueness of the solution and very heterogeneous area



We need (1) using other inversion methods (e.g non linearized inversion) or (2) having a 3-D starting model, laterally heterogeneous and close to the solution, for a linearized inversion

| Introduction<br>00000 | Group velocities<br>00000 | Swave velocity<br>0●00000 | Monitoring<br>00 | Conclusions | Acknowledgements |  |
|-----------------------|---------------------------|---------------------------|------------------|-------------|------------------|--|
| New met               | hodological               | annroach                  |                  |             |                  |  |

Aim : get a 3-D model laterally heterogeneous, close to the solution, for a linearized inversion

 Creation of a library of 5-layers velocity models and dispersion curves associated (2 766 555 models)

| layer             | thickness ( <i>km</i> ) | $V_P(km.s^{-1})$ |
|-------------------|-------------------------|------------------|
| Top layer         | 0-4                     | 2-3              |
| Sedimentary layer | 0-12                    | 3-5.5            |
| Upper Crust       | 10-26                   | 5-6              |
| Lower Crust       | 10-26                   | 6-7              |
| Mantle            | $\infty$                | 7.5-8.1          |

| Introduction<br>00000 | Group velocities<br>00000 | Swave velocity<br>0●00000 | Monitoring<br>00 | Conclusions | Acknowledgements |  |
|-----------------------|---------------------------|---------------------------|------------------|-------------|------------------|--|
| New met               | hodological               | approach                  |                  |             |                  |  |

Aim : get a 3-D model laterally heterogeneous, close to the solution, for a linearized inversion

- Creation of a library of 5-layers velocity models and dispersion curves associated (2 766 555 models)
- For each node :



| Introduction<br>00000 | Group velocities<br>00000 | Swave velocity<br>0●00000 | Monitoring<br>00 | Conclusions | Acknowledgements |
|-----------------------|---------------------------|---------------------------|------------------|-------------|------------------|
| New met               | hodological               | approach                  |                  |             |                  |

Aim : get a 3-D model laterally heterogeneous, close to the solution, for a linearized inversion

- Creation of a library of 5-layers velocity models and dispersion curves associated (2 766 555 models)
- For each node :
  - calculation of *RMS* between the observed dispersion curve and the whole library



| Introduction<br>00000 | Group velocities<br>00000 | Swave velocity<br>0●00000 | Monitoring<br>00 | Conclusions | Acknowledgements |  |
|-----------------------|---------------------------|---------------------------|------------------|-------------|------------------|--|
| New met               | hodological               | approach                  |                  |             |                  |  |

Aim : get a 3-D model laterally heterogeneous, close to the solution, for a linearized inversion

- Creation of a library of 5-layers velocity models and dispersion curves associated (2 766 555 models)
- For each node :
  - calculation of RMS between the observed dispersion curve and the whole library
  - average of the 1000 models with the best RMS







 $\Rightarrow$  Average *RMS* decrease from 0.070 km.s<sup>-1</sup> to 0.052 km.s<sup>-1</sup>

| Introduction | Group velocities | Swave velocity | Monitoring | Conclusions | Acknowledgements |
|--------------|------------------|----------------|------------|-------------|------------------|
| 00000        | 00000            | 000000         | 00         |             |                  |
|              |                  |                |            |             |                  |

# Velocity maps - results



Macquet et al, 2014



### Labourd-Mauléon Bouguer Anomaly



19/28



Macquet et al, 2014

Tugend et al. 2014

#### Interpretation

Traces of the ancient hyper-extensional rifts which could have preceded the compression



Mouthereau et al., 2014

# Interpretation Traces of the ancient hyper-extensional rifts which could have preceded the compression







- 2 Group velocity model
- 3 -D Swave velocity model

### 4 Monitoring with seismic ambient noise

| Introdu | ction |  |
|---------|-------|--|
| 00000   |       |  |

Group velocities

Swave velocity

Monitoring ●○ Conclusions

Acknowledgements

# Monitoring volcanoes



Duputel et al. (2009)





# Monitoring the St. Gallen geothermal site



Obermann et al. (2015)



## Monitoring the St. Gallen geothermal site





Figure 9. Scattering cross-section density changes derived by least squares inversion averaged over July 2013. The observed changes are around the injection well, indicating a causal relationship with the activities at the well.

Obermann et al. (2015)

# Conclusions

- Development of a new approach for the inversion of  $V_g(\mathcal{T})$  to  $V_S(z)$
- This first 3D V<sub>S</sub> model gives some keys to better understand the geodynamical history of the Pyrenees (it still needs to be explored...)
- The ambient noise correlation gives the possibility to image everywhere on the Earth
- Some studies show that ambient noise correlation can be used for monitoring

# ${\sf Acknowledgements}$

- Dr. Don Lawton
- CREWES staff and students
- This work was done during my Ph. D thesis, ISTerre laboratory, University of Joeseph Fourier (France), under the supervision of Dr. A. Paul and Dr. H. Pedersen.





# Thank you!