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Introduction

• Fractures are everywhere

• Unlike faults, their sub-seismic length makes it even more difficult to image directly 

• This creates a need to develop effective media theories for characterizing reservoir fractures

• The increasing reliance on effective medium theories begs the need for understanding 
the validity, the limit of applicability and assessment of their usefulness for reservoir 
fracture studies

• With this in mind, We will compare two popular seismological theories of Hudson and 
Schoenberg



Definition 
of 

parameters

 eg. azimuth-dependent 
NMO velocity

 anisotropic AVO gradient
 Interval velocity and 

traveltime delays
 Fracture Orientation

 fracture properties- Δ𝑁 and Δ𝑇

 0 < Δ𝑁 and Δ𝑇 < 1

 Δ𝑁 andΔ𝑇=0; no fracture
 Δ𝑁and Δ𝑇=1; extreme 

fracturing

fracture properties- 𝛼 and e

𝛼, aspect ratio (crack shape)
𝑒 , crack density (0<e<0.2) 

Fractured 
reservoir

Rock Physics Seismic Method

Thomsen’s 
anisotropy

𝜀𝑣 , 𝛿(𝑣), 𝛾(𝑣)

and 𝜂(𝑣)



Fracture models
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• They are based on continuum hypothesis (𝜆 ≫ 𝑑)

continuum theory 

(𝝀 ≫ 𝒅)

Inhomogeneous medium homogeneous medium

Representations of 
fracture models  (Liu et. 
al., 2000)

 Hudson’smicrocrack model and
 Schoenberg’s parallel fracture

model.
 Self-Consistent model
 Kuster-Toksoz's model
 Differential Effective model

Justification: wave equation is
simplified and seismic wavelength
(𝜆) is much greater than the scale
of material (d) under probe



Hudson microcrack theory
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Isotropic stiffness 
tensor of host 
rock

1st order perturbation 
describe single scattering
(isolated cracks)

2nd order perturbation 
accounts for crack-crack 
interactions

Effective 
stiffness

𝒄𝒆 = 𝒄(𝟎) + 𝒆𝒄(𝟏) + 𝒆𝟐𝒄(𝟐) + 𝑶(𝒆𝟑)

𝒄(𝟏) = −
𝟏

𝝁
∗

𝝀𝒃 𝝀𝒃 + 𝟐𝝁𝒃
𝟐𝑼𝟑𝟑 𝝀𝒃 𝝀𝒃 + 𝟐𝝁𝒃 𝑼𝟑𝟑 𝝀𝒃 𝝀𝒃 + 𝟐𝝁𝒃 𝑼𝟑𝟑 𝟎 𝟎 𝟎

𝝀𝒃 𝝀𝒃 + 𝟐𝝁𝒃 𝑼𝟑𝟑 𝝀𝒃
𝟐𝑼𝟑𝟑 𝝀𝒃

𝟐𝑼𝟑𝟑 𝟎 𝟎 𝟎

𝝀𝒃 𝝀𝒃 + 𝟐𝝁𝒃 𝑼𝟑𝟑 𝝀𝒃
𝟐𝑼𝟑𝟑 𝝀𝒃

𝟐𝑼𝟑𝟑 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝝁𝒃

𝟐𝑼𝟏𝟏 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝝁𝒃
𝟐𝑼𝟏𝟏

𝒄(𝟐) =
𝒒

𝟏𝟓
∗

𝑿 𝑼𝟑𝟑
𝟐 𝝀𝒃𝑼𝟑𝟑

𝟐 𝝀𝒃𝒆𝑼𝟑𝟑
𝟐 𝟎 𝟎 𝟎

𝝀𝒃𝑼𝟑𝟑
𝟐 𝑴𝒆𝑼𝟑𝟑

𝟐 𝑴𝒆𝑼𝟑𝟑
𝟐 𝟎 𝟎 𝟎

𝝀𝒃𝑼𝟑𝟑
𝟐 𝑴𝑼𝟑𝟑

𝟐 𝑴𝑼𝟑𝟑
𝟐 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝑬𝑼𝟏𝟏
𝟐 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝑬𝑼𝟏𝟏
𝟐

 e is crack density
 𝜆𝑏 and 𝜇𝑏 are the

lame parameters of
the host rock

The linear term
dominates at
sufficiently
small e

 𝑈11 and 𝑈33 are the dimensionless
quantities that depends on the BC’s of the
crack face, infill material and crack
direction

 q,X,M and E depend of 𝜆𝑏 and 𝜇𝑏 (not
shown)



Schoenberg’s parallel fracture model
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𝒔 =  𝒔𝒃 +   𝒔𝒇

• A special case for rotationally invariant fractures

As a result, the fracture compliances  matrix 𝑠𝑓 reduces to 

 0 ≤ Δ𝑁 and Δ𝑇 ≤ 1
 Δ𝑁 and Δ𝑇 = 0; no fracturing
 Δ𝑁 and Δ𝑇 = 1; high degree of fracturing
 𝑐𝑓,44 is not influenced by presence of fracture

𝜎11 = 𝜎22 = 𝜎33 =0

𝑢1 = ℎ(𝐾𝑁𝜎11 + 𝐾𝑁𝐻𝜎12 + 𝐾𝑁𝑉𝜎13)
𝑢2 = ℎ(𝐾𝑁𝐻𝜎11 + 𝐾𝐻𝜎12 + 𝐾𝑉𝐻𝜎13)

𝑢3 = ℎ(𝐾𝑁𝑉𝜎11 + 𝐾𝑉𝐻𝜎12 + 𝐾𝑉𝜎13),

𝑠𝑓 = 

𝐾𝑁 0 0 0 𝐾𝑁 𝐾𝑁
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

𝐾𝑁𝑉 0 0 0 𝐾𝑉 𝐾𝑉𝐻
𝐾𝑁𝐻 0 0 0 𝐾𝑉𝐻 𝐾𝐻

𝐾𝑁𝑉=𝐾𝑁𝐻 = 𝐾𝑉𝐻 = 0,
𝐾𝑉=𝐾𝐻

𝑠𝑓 = 

𝐾𝑁 0 0 0 𝐾𝑁 𝐾𝑁
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 𝐾𝑇 0
0 0 0 0 0 𝐾𝑇

𝒄𝒇𝒉𝒕𝒊 = −
𝟏

𝝁
∗

𝑴𝚫𝑵 𝝀𝒃𝚫𝑵 𝝀𝒃𝚫𝑵 𝟎 𝟎 𝟎

𝝀𝒃𝚫𝑵 𝝀𝒃
𝟐𝚫𝑵/𝑴 𝝀𝒃

𝟐𝚫𝑵/𝑴 𝟎 𝟎 𝟎

𝝀𝒃𝚫𝑵 𝝀𝒃
𝟐𝚫𝑵/𝑴 𝝀𝒃

𝟐𝚫𝑵/𝑴 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝝁𝒃𝚫𝑻 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝝁𝒃𝚫𝑻

c  = 𝒔−𝟏 = 𝒄𝒃 + 𝒄𝒇

𝚫𝑵 = ൗ𝑀𝐾𝑁
1+𝑀𝐾𝑁 ,

𝚫𝑻 = ൗ
𝜇𝐾𝑁

1 + 𝜇𝐾𝑁
𝑲𝑵= 𝒔𝒇,𝟏𝟏
𝑲𝑻 = 𝒔𝒇,𝟓𝟓 = 𝒔𝒇,𝟔𝟔



Comparison of Hudson and Schoenberg
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Schoenberg and Douma (1988)

pointed out that the effective

stiffnesses of both Schoenberg’s LST

theory and Hudson’s model have the

same structure and become identical if

the fracture weaknesses satisfy the

following relations:

𝒈 = ( ൗ𝑽𝒔
𝑽𝒑)

𝟐

For dry cracks, 𝑲𝒇 𝑎𝑛𝑑 𝝁𝒇=0 

𝚫𝑵 =
𝟒𝒆

𝟑𝒈 𝟏−𝒈

𝚫𝑻 =
𝟏𝟔𝒆

𝟑 𝟑−𝟐𝒈

If the cracks are filled with fluid,
𝝁𝒇=0, but 𝑲𝒇 ≠ 0,

𝚫𝑵 = 0,

𝚫𝑻 =
𝟏𝟔𝒆

𝟑 𝟑−𝟐𝒈

𝚫𝑵 = ൗ𝝀𝒃+𝟐𝝁𝒃 𝑈33𝑒
𝝁𝒃 ,

𝚫𝑻 =𝑈11𝑒

𝚫𝑵 =
𝟒𝒆

𝟑𝒈 𝟏−𝒈 𝟏+
𝟏

𝝅𝒈(𝟏−𝒈)

𝑲𝒇+𝟒/𝟑𝝁𝒇

𝝁𝒃

𝒂

𝒄

𝚫𝑻 =
𝟏𝟔𝒆

𝟑 𝟑−𝟐𝒈 𝟏+
𝟏

𝝅(𝟑−𝟐𝒈)

𝝁𝒇

𝝁𝒃

𝒂

𝒄



Critiquing Hudson’s theory (Grechka and Kachanov, 2006b)

, Schoenberg's LST

, Non-Interacting 
approximations 
(NIA)

, Finite-element 
modeling

, Hudson’s 1st order

, Hudson’s 2nd order

Hudson’s theory problematic for large
Poisson values(Vs/Vp very small)
when 𝑐𝑒11 and 𝑐𝑒22 < 0, Physically

Implausible as this violates elasticity
stability condition

The quadratic term in 2nd order
Hudson yields positive coefficients of
fracture stiffness which makes
𝑐𝑒11and 𝑐𝑒22to begin to increase at

some value of crack density
exhibiting unphysical behavior

Schoenberg result has close alliance
with NIA and numerical modeling

𝒄
𝒆
𝟏
𝟏
(G

P
a

)

𝒄
𝒆
𝟐
𝟐
(G

P
a

)

𝒄𝒆= 𝒄𝟎

𝒄𝒆= 𝟎

𝒄𝒆= 𝒄𝟎

𝒄𝒆= 𝟎

crack density (e)



Comparison of Hudson and Schoenberg (Grechka and 
Kachanov, 2006b)

𝜺
𝒗

crack density (e)

𝜸(𝒗) ≈ 𝒆



Sensitivity of 
stiffness 

parameters to 
crack density

𝒄𝒆𝟓𝟓

𝒄𝒆𝟐𝟐

𝒄𝒆𝟏𝟑

𝒄𝒆𝟏𝟏

crack density (e)

Aspect ratio = 0.7 (nearly circular cracks)

Aspect ratio = 0.7 
(circular cracks)



Sensitivity of anisotropy parameters to crack density

𝜸(𝒗)𝜹(𝒗)𝜺(𝒗)

crack density (e)

Aspect ratio = 0.7 (nearly circular cracks)



Sensitivity of 
stiffness 

parameters to 
crack density

crack density (e)

Aspect ratio = 0.07 (ellipsoidal cracks)

𝒄𝒆𝟏𝟏 𝒄𝒆𝟐𝟐

𝒄𝒆𝟏𝟑
𝒄𝒆𝟓𝟓

Aspect ratio = 0.07 
(ellipsoidal cracks)



Sensitivity of anisotropy parameters to crack density

crack density (e)

Aspect ratio = 0.07 (ellipsoidal cracks)

𝜺(𝒗) 𝜹(𝒗) 𝜸(𝒗)



Sensitivity of 
fracture 

weaknesses to 
crack density

crack density (e)

Δ
𝑁

an
d
Δ
𝑇

Aspect ratio = 0.7Aspect ratio = 0.07
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• 3D-3C acquisition WAZ

• Orthogonal design

• Finite difference

Homogeneous equivalent model from 
Schoenberg and Muir (1989) theory

Layer
1

𝑽𝒑 = 𝟑𝟓𝟎𝟎, 𝑽𝒔 = 𝟐𝟏𝟒𝟎 , 𝝆 = 𝟐𝟐𝟎𝟎

HTI 
Layer

𝑽𝒑𝟎 = 𝟒𝟒𝟑𝟖,
𝑽𝒔𝟎 = 𝟐𝟕𝟒𝟔,
𝝆𝒆 = 𝟐𝟒𝟎𝟏,

𝝐𝒆 = −. 𝟎𝟎𝟑𝟒,
𝜸𝒆 = −. 𝟎𝟔𝟎𝟕,
𝜹𝒆 = −. 𝟎𝟓𝟒𝟓

Layer
3

𝑽𝒑 = 𝟓𝟎𝟎𝟎, 𝑽𝒔 = 𝟑𝟑𝟎𝟎, 𝝆 = 𝟐𝟗𝟎𝟎

• Explosive P source.
• 40m source & receiver depth
• Source frequency is 15hz

Acquisition

FD modeling

HTI

Isotropic

Isotropic

4km

0-

1-

1.4-

2-
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Example: FD modeling

𝒁 ∥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆 𝒁 ⊥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆 𝒁 𝒅𝒊𝒇𝒇

Offset (km) Offset (km)Offset (km)

Elastic modeling
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Example: FD modeling

Equivalent modeling

𝒁 ∥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆 𝒁 ⊥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆 𝒁 𝒅𝒊𝒇𝒇

Offset (km) Offset (km)Offset (km)
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𝑹 ⊥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆𝑹 ∥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆 𝑹 𝒅𝒊𝒇𝒇

Example: FD modeling

Offset (km) Offset (km)Offset (km)

Elastic modeling
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𝑹 ⊥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆𝑹 ∥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆 𝑹 𝒅𝒊𝒇𝒇

Equivalent modeling

Example: FD modeling

Offset (km) Offset (km)Offset (km)
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𝑻 ⊥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆𝑻 ∥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆 𝑻 𝒅𝒊𝒇𝒇

Example: FD modeling

Offset (km) Offset (km)Offset (km)

Elastic modeling
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𝑻 ⊥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆𝑻 ∥ 𝒕𝒐 𝒔𝒕𝒓𝒊𝒌𝒆 𝑻 𝒅𝒊𝒇𝒇

Equivalent modeling

Example: FD modeling

Offset (km) Offset (km)Offset (km)
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Example: Constant-offset azimuthal scans

azimuth azimuth

P1

P2

S1-S2 

overlap

S1-S2 

overlap

𝒁 𝒕,𝒓,𝝋

elastic modeling
𝒁 𝒕,𝒓,𝝋

equivalent modeling



S1-S2 

overlap
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S1-S2 

overlap

𝑹 𝒕,𝒓,𝝋

elastic modeling
𝑹 𝒕,𝒓,𝝋

equivalent modeling

Example : Constant-offset azimuthal scans

azimuth azimuth
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S1
S2
S1
S2

S1
S2
S1
S2

𝑻 𝒕,𝒓,𝝋

elastic modeling
𝑻 𝒕,𝒓,𝝋

equivalent modeling

Constant-offset azimuthal scans

azimuth azimuth
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PP
elastic

modeling

o
ff

se
t 

(k
m

)

PP
equivalent
modeling

PP
Ruger

modeling

azimuth (𝝋)

Example: Offset-Azimuth analysis: Top of HTI
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PS
elastic

modeling

PS
equivalent
modeling

o
ff

se
t 

(k
m

)

azimuth (𝝋)

Example: Offset-Azimuth analysis: Top of HTI
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PS
elastic

modeling (trans)

PS
equivalent

modeling (trans)

o
ff

se
t 

(k
m

)

azimuth (𝝋)

Example: Offset-Azimuth analysis: Top of HTI
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Conclusion
• Fracture models provide a link between anisotropic properties and fracture

properties of fractured reservoir.

• We have studied the equivalence between Hudson’s microcrack model and
Schoenberg’s linear slip theory however knowledge of how to estimate
aspect ratio and crack density is crucial in order to successfully relate these
two models.

• We have shown that the equivalent Schoenberg Linear slip theory
formulated by Schoenberg and Douma is closer to the 1st order Hudson’s
theory; However, Grechka and Kachanov studies show that at certain crack
density (0.05 in his paper) Hudson’s model gave unphysical results.

• For small aspect ratios, however, Hudson’s first and second order theories
are close.
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Conclusion
• TIGER finite difference modeling result comparison between elastic and

Schoenberg’s equivalent modeling for the same reservoir show that the
Schoenberg linear slip theory is reliable.

• Overall we conclude that the linear slip theory which is much closer to the
numerical modeling is superior to Hudson’s first and second order schemes.

• The next immediate work will be to look in Grechka and Kachanov papers for
clues on how to better under Hudson’s model especially for thinly fractured
medium and carry out similar analysis.
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