A review of fracture models for azimuthal anisotropy studies

by

Sitamai Ajiduah
Gary Margrave
Outline

• Introduction
 • Definition of parameters

• Fracture Models
 • Hudson’s microcrack model
 • Schoenberg’s parallel fracture model
 • Comparison of Schoenberg’s and Hudson’s theory
 • Critiquing Hudson’s theory (Grechka and Kachanov, 2006b)

• Sensitivity of stiffness parameters to crack density
• Sensitivity of anisotropy parameters to crack density
• Sensitivity of weakness parameters to crack density

• Results from TIGER Finite difference modeling
 • Compare seismic response from Vertical (Z), Radial (R), and Transverse dataset
 • Constant azimuth scan
 • Offset-Azimuth analysis from top of fractured medium

• Conclusion
• Acknowledgments
Introduction

• Fractures are everywhere
• Unlike faults, their sub-seismic length makes it even more difficult to image directly
• This creates a need to develop effective media theories for characterizing reservoir fractures
• The increasing reliance on effective medium theories begs the need for understanding the validity, the limit of applicability and assessment of their usefulness for reservoir fracture studies
• With this in mind, We will compare two popular seismological theories of Hudson and Schoenberg
Definition of parameters

- Fracture properties: \(\alpha \) and \(e \)
- \(\alpha \), aspect ratio (crack shape)
- \(e \), crack density (0 < \(e \) < 0.2)

- Fracture properties: \(\Delta N \) and \(\Delta T \)
- \(\Delta N \) and \(\Delta T \) < 1
- \(\Delta N \) and \(\Delta T \) = 0; no fracture
- \(\Delta N \) and \(\Delta T \) = 1; extreme fracturing

- Rock Physics
- Seismic Method
- Thomsen’s anisotropy: \(\varepsilon^v \), \(\delta^{(v)} \), \(\gamma^{(v)} \) and \(\eta^{(v)} \)
- Fractured reservoir
- Seismic attributes
 - eg. azimuth-dependent NMO velocity
 - Anisotropic AVO gradient
 - Interval velocity and traveltime delays
 - Fracture Orientation

Schoenberg’s Linear slip theory

Hudson Penny shape model
Fracture models

- They are based on continuum hypothesis ($\lambda \gg d$)

Justification: wave equation is simplified and seismic wavelength (λ) is much greater than the scale of material (d) under probe.

Representations of fracture models (Liu et. al., 2000)

- Hudson’s microcrack model and
- Schoenberg’s parallel fracture model.
- Self-Consistent model
- Kuster-Toksoz's model
- Differential Effective model
Hudson microcrack theory

\[c_e = c^{(0)} + e c^{(1)} + e^2 c^{(2)} + O(e^3) \]

Effective stiffness
- Isotropic stiffness tensor of host rock

1st order perturbation
- Describe single scattering (isolated cracks)

\[c^{(1)} = -\frac{1}{\mu} \]

2nd order perturbation
- Accounts for crack-crack interactions

\[c^{(2)} = \frac{q}{15} \]

The linear term dominates at sufficiently small \(e \)

- \(e \) is crack density
- \(\lambda_b \) and \(\mu_b \) are the lame parameters of the host rock

- \(U_{11} \) and \(U_{33} \) are the dimensionless quantities that depends on the BC’s of the crack face, infill material and crack direction

- \(q, X, M \) and \(E \) depend of \(\lambda_b \) and \(\mu_b \) (not shown)
Schoenberg’s parallel fracture model

\[S = S_b + S_f \]

\[\sigma_{11} = \sigma_{22} = \sigma_{33} = 0 \]

\[[u_1] = h(K_N \sigma_{11} + K_{NH} \sigma_{12} + K_{NV} \sigma_{13}) \]

\[[u_2] = h(K_{NH} \sigma_{11} + K_H \sigma_{12} + K_{VH} \sigma_{13}) \]

\[[u_3] = h(K_{NV} \sigma_{11} + K_{VH} \sigma_{12} + K_V \sigma_{13}) \]

\[S_f = \begin{bmatrix}
 K_N & 0 & 0 & K_N & K_N \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 K_{NV} & 0 & 0 & K_V & K_{VH} \\
 K_{NH} & 0 & 0 & K_{VH} & K_H
\end{bmatrix} \]

- A special case for rotationally invariant fractures

 \[K_{NV} = K_{NH} = K_{VH} = 0, \quad K_V = K_H \]

\[c_{fhti} = -\frac{1}{\mu} \]

\[\begin{bmatrix}
 M \Delta_N & \lambda_b \Delta_N & \lambda_b \Delta_N & 0 & 0 & 0 \\
 \lambda_b \Delta_N & \lambda_b^2 \Delta_N/M & \lambda_b^2 \Delta_N/M & 0 & 0 & 0 \\
 \lambda_b \Delta_N & \lambda_b^2 \Delta_N/M & \lambda_b^2 \Delta_N/M & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & \mu_b \Delta_T & 0 \\
 0 & 0 & 0 & 0 & 0 & \mu_b \Delta_T
\end{bmatrix} \]

\[\Delta_N = \frac{MK_N}{1 + MK_N}, \quad \Delta_T = \frac{\mu K_N}{1 + \mu K_N} \]

\[K_N = s_{f,11}, \quad K_T = s_{f,55} = s_{f,66} \]

As a result, the fracture compliances matrix \(S_f \) reduces to

\[c = S^{-1} = c_b + c_f \]

\[s_f = \begin{bmatrix}
 K_N & 0 & 0 & K_N & K_N \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & K_T \\
 0 & 0 & 0 & 0 & K_T
\end{bmatrix} \]
Schoenberg and Douma (1988) pointed out that the effective stiffnesses of both Schoenberg’s LST theory and Hudson’s model have the same structure and become identical if the fracture weaknesses satisfy the following relations:

\[\Delta_N = \frac{(\lambda_b + 2\mu_b)U_{33}e}{\mu_b}, \]

\[\Delta_T = U_{11}e \]

\[\Delta_N = \frac{4e}{3g(1-g)[1+\frac{1}{\pi g(1-g)}(\frac{K_f+4/3\mu_f}{\mu_b})(\frac{a}{c})]} \]

\[\Delta_T = \frac{16e}{3(3-2g)[1+\frac{1}{\pi(3-2g)}(\frac{\mu_f}{\mu_b})(\frac{a}{c})]} \]

\[g = \left(\frac{V_S}{V_P}\right)^2 \]

For dry cracks, \(K_f \) and \(\mu_f = 0 \),

\[\Delta_N = \frac{4e}{3g(1-g)} \]

\[\Delta_T = \frac{16e}{3(3-2g)} \]

If the cracks are filled with fluid, \(\mu_f = 0 \), but \(K_f \neq 0 \),

\[\Delta_N = 0, \]

\[\Delta_T = \frac{16e}{3(3-2g)} \]

\[\epsilon^{(V)} = -2g(1-g)\Delta_N, \]

\[\delta^{(V)} = -2g[(1-2g)\Delta_N + \Delta_T], \]

\[\gamma^{(V)} = -\frac{\Delta_T}{2}, \]

\[\eta^{(V)} = 2g(\Delta_T - g\Delta_N). \]

\[\epsilon^{(V)} = -\frac{8}{3}e, \]

\[\delta^{(V)} = -\frac{8}{3}\left[1 + \frac{g(1-2g)}{(3-2g)(1-g)}\right], \]

\[\gamma^{(V)} = -\frac{8e}{3(3-2g)}, \]

\[\eta^{(V)} = \frac{8}{3}\left[1 - \frac{g(1-2g)}{(3-2g)(1-g)}\right]. \]
Critiquing Hudson’s theory (Grechka and Kachanov, 2006b)

Hudson’s theory problematic for large Poisson values (Vs/Vp very small) when c_{e11} and $c_{e22} < 0$, Physically Implausible as this violates elasticity stability condition.

The quadratic term in 2nd order Hudson yields positive coefficients of fracture stiffness which makes c_{e11} and c_{e22} to begin to increase at some value of crack density exhibiting unphysical behavior.

Schoenberg result has close alliance with NIA and numerical modeling.
Comparison of Hudson and Schoenberg (Grechka and Kachanov, 2006b)
Sensitivity of stiffness parameters to crack density

Aspect ratio = 0.7 (nearly circular cracks)

Aspect ratio = 0.7 (circular cracks)
Sensitivity of anisotropy parameters to crack density

 Aspect ratio = 0.7 (nearly circular cracks)
Sensitivity of stiffness parameters to crack density

Aspect ratio = 0.07 (ellipsoidal cracks)
Sensitivity of anisotropy parameters to crack density

Aspect ratio = 0.07 (ellipsoidal cracks)

\[\varepsilon^{(\nu)} \]

\[\delta^{(\nu)} \]

\[\gamma^{(\nu)} \]

crack density (e)

Sensitivity of anisotropy parameters to crack density
Sensitivity of fracture weaknesses to crack density

\[\Delta N \text{ and } \Delta T \]

Aspect ratio = 0.07

Aspect ratio = 0.7

\[\text{normal weakness, } \Delta_N \]

\[\text{Tangential weakness, } \Delta_T \]

crack density (e)

www.crewes.org
Homogeneous equivalent model from Schoenberg and Muir (1989) theory

Layer	\(V_p \) \(V_s \) \(\rho \)		
1	3500	2140	2200
2	4438	2746	2401
	\(e^e = -0.0034 \)	\(\gamma^e = -0.0607 \)	\(\delta^e = -0.0545 \)
3	5000	3300	2900

- **Layer 1**
 - HTI
 - \(V_{p0} = 4438 \)
 - \(V_{s0} = 2746 \)
 - \(\rho^e = 2401 \)
 - \(e^e = -0.0034 \)
 - \(\gamma^e = -0.0607 \)
 - \(\delta^e = -0.0545 \)

- **Layer 3**
 - \(V_p = 5000 \)
 - \(V_s = 3300 \)
 - \(\rho = 2900 \)

Acquisition

- 3D-3C acquisition WAZ
- Explosive P source.
- Orthogonal design
- 40m source & receiver depth
- Source frequency is 15hz
Example: FD modeling

\[
Z \parallel \text{ to strike} \quad Z \perp \text{ to strike} \quad Z \text{ diff}
\]
Example: FD modeling

$Z \parallel$ to strike

$Z \perp$ to strike

Z diff

Offset (km)
Example: FD modeling

$R \parallel$ to strike

$R \perp$ to strike

R_{diff}

Offset (km)

Offset (km)

Offset (km)
Example: FD modeling

$R \parallel$ to strike

$R \perp$ to strike

R_{diff}
Example: FD modeling

\[T \parallel \text{to strike} \]

\[T \perp \text{to strike} \]

\[T \text{diff} \]
Example: FD modeling

\[T \parallel \text{ to strike} \]

\[T \perp \text{ to strike} \]

\[T_{\text{diff}} \]
Example: Constant-offset azimuthal scans

$Z(t,r,\varphi)$

elastic modeling

$r = 1.6\text{km}$

$Z(t,r,\varphi)$

equivalent modeling

$r = 1.6\text{km}$
Example: Constant-offset azimuthal scans

$R_{(t,r,\varphi)}$

elastic modeling

$r = 1.6km$

equivalent modeling

$r = 1.6km$
Constant-offset azimuthal scans

\[T(t,r,\varphi) \]

elastic modeling

\[r = 1.6\text{km} \]

equivalent modeling

\[r = 1.6\text{km} \]
Example: Offset-Azimuth analysis: Top of HTI

PP elastic modeling

PP equivalent modeling

PP Ruger modeling
Example: Offset-Azimuth analysis: Top of HTI
Example: Offset-Azimuth analysis: Top of HTI
Conclusion

- Fracture models provide a link between anisotropic properties and fracture properties of fractured reservoir.

- We have studied the equivalence between Hudson’s microcrack model and Schoenberg’s linear slip theory however knowledge of how to estimate aspect ratio and crack density is crucial in order to successfully relate these two models.

- We have shown that the equivalent Schoenberg Linear slip theory formulated by Schoenberg and Douma is closer to the 1st order Hudson’s theory; However, Grechka and Kachanov studies show that at certain crack density (0.05 in his paper) Hudson’s model gave unphysical results.

- For small aspect ratios, however, Hudson’s first and second order theories are close.
Conclusion

• TIGER finite difference modeling result comparison between elastic and Schoenberg’s equivalent modeling for the same reservoir show that the Schoenberg linear slip theory is reliable.

• Overall we conclude that the linear slip theory which is much closer to the numerical modeling is superior to Hudson’s first and second order schemes.

• The next immediate work will be to look in Grechka and Kachanov papers for clues on how to better under Hudson’s model especially for thinly fractured medium and carry out similar analysis.
Acknowledgement

• CREWES Sponsors
• NSERC through the grant CRDPJ 379744-08
• SINTEF TIGER
• Gary Margrave and Don Lawton
• Faranak Mahmoudian
• Kelvin Hall
• Jian Sun
• Raul Cova
• Huaizhen Chen
• Pat Daley
• Joe Wong
• CREWES Staff & Students
Thank you for listening