A full waveform inversion approach based on dilatation and rotation of scatter points and PP/PS wave separation

Hassan Khaniani, Shahpoor Moradi and Daniel Trad University of Calgary

March 03rd , 2017

Outline

- Introduction and motivation
- Forward problem using elastic scattering
- Inverse problem using migration/inversion
- Numerical experiments
- Conclusions

Introduction and motivation

- Perform the P and S wave separation using migration imaging conditions
- Reduce the uncertainty of inversion by avoiding co-location of P- and Swaves images
- Taking into account the formulation of Tarantola's (1986) strategies for our inversion problem
- Establish a framework for elastic waveform migration and inversion

Forward problem (Elastic scattering)

$$\boldsymbol{U} = \boldsymbol{U}_0 + \delta \boldsymbol{U}$$

- $oldsymbol{U}_{0}$: Incident wave
- δU : Scattered wave
- *m* : Model

Inverse problem (Two scenarios for Migration plus inversion)

$$\boldsymbol{U} = \boldsymbol{U}_0 + \delta \boldsymbol{U}$$

- $oldsymbol{U}_0$: Incident wave
- δU : Scattered wave

$$\rho_0 \partial_t^2 \delta \boldsymbol{U} - (\lambda_0 + 2\mu_0) (\nabla \nabla \bullet \delta \boldsymbol{U}) + \mu_0 (\nabla \times \nabla \times \delta \boldsymbol{U}) = \boldsymbol{f}(\boldsymbol{U}_0, \delta \boldsymbol{m})$$

Acceleration term

Dilatation term

Rotation term

Perturbation

Elastic waves and sensitivity experiment

Dilatation

P-to-P scattering

$$\mathsf{S}^{\mathsf{P}\mathsf{P}} = \frac{2\delta\mu}{\lambda_0 + 2\mu_0} \cos^2\theta^{\mathsf{P}\mathsf{P}} + \frac{\delta\lambda}{\lambda_0 + 2\mu_0} + \frac{\delta\rho}{\rho_0} \cos\theta^{\mathsf{P}\mathsf{P}}$$

P-to-S scattering

 $S^{PS} = \frac{\delta\mu}{\mu_0} \frac{v_s}{v_P} sin 2\theta^{PS} + \frac{\delta\rho}{\rho_0} sin \theta^{PS}$ Beylkin and Burridge (1990)
CREWES

Migration and Inversion (scattering vs reflection)

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

PP and PS modeling

Color scale shows the particle displacement direction. The matlab code of Manning (2008) is used here.

PP and PS wavefield migration and inversion

Wavefield sensitivity to Vp and Vs

151 shots records are simulated and migrated/inverted

Numerical examples

FACULTY OF SCIENCE Department of Geoscience

Numerical examples (Preliminarily results)

Sensitivity for P- wave impedance Sensitivity for S- wave impedance

NSERC

CRSNG

FACULTY OF SCIENCE

Department of Geoscience

Numerical examples

Sensitivity for P- wave impedance

Sensitivity for S- wave impedance

Uncertainty of inversion of colocation of PP and PS

Artifact of P-to-S image on S-wave inversion Artifact of P-to-P image on S-wave inversion

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

Conclusion

An FWI inversion strategy is developed by

- ✓1- Modification of imaging conditions for P- and S- wave separation
- 2- Adaptation of Tarantola's inversion strategy
- ✓3- Inversion performed after multicomponent migration
- We visualized FWI sensitivity functions using displacement vectors

Acknowledgments

CREWES faculty and sponsors
 NSERC (CRDPJ 461179-13)
 Davood Nowroozi
 Kris Innanen, Don Lawton

Thank you

