Processing of a Multicomponent Seismic Survey from West-Central Alberta

Winter 2019 Tech-Talk

Hussain Aldhaw Supervisor: Dr. Don Lawton

Friday, February 1st

Goals

- Process PP and PS data from a portion of the Bigstone 3C3D seismic dataset.
- Register the PP and PS processed volumes through PSDM.
- Improve the S-wave velocities by looking closely at the pre-stack shallow data as the S-wave shallow data usually lose their characteristics after application of receiver statics.
- Test optimum binning of the PS data for improved PS velocity analysis.
- Couple improved velocity analysis with microseismic focal depth investigations.

Outline

- Introduction
- Processing Workflow
- Processing Steps
- Future Work

Introduction - Project Location Map

Project Map (Schematic)

- The total area = ~100 sq.km.
- The area of the segmented data = ~44 sq.km

Introduction - Acquisition Parameters

General Parameters

Instrumentation Parameters

Survey Type	Orthogonal
Surface Area	~ 44 Sq.Km
Source Type	Dynamite
Widest Survey E-W	~ 8 Km
Widest Survey N-S	~ 5.5 Km

Receiver Parameters

Direction	N-S
Group Interval	60 m
Receiver Line Interval	360 m
Number of Receiver Lines	23

Sample Rate	1 ms
Record Length	5 s
Low Cut Filter	3 Hz
High Cut Filter	400 Hz
Geophone Type	Accelerometer

Source Parameters

Direction	E-W
Source Interval	60 m
Source Line Interval	420 m
Number of Source Lines	12
Bin Size	30m x 30m

Processing Steps - Geometry

Processing Workflow

Processing Steps - Fold Map (Nominal=135)

Processing Steps - Shot Gather (Vertical comp.)

Χ

Processing Steps - Shot Gather (H1)

X

Processing Steps - Shot Gather (H2)

Χ

Processing Steps – Binning (CMP and ACP)

- The raypaths of the converted waves are asymmetric.
- common conversion point (CCP) is considered instead of common mid-point (CMP) in the conventional surveys.
- There different CCP techniques could be used.

Midpoint, Conversion points and asymptotic approximation

Processing Steps – Binning Evaluation

- Xp = the offset from the source to the conversion point
- X = the total source-to-receiver offset
- V_s/V_p = the shear-to-compressional wave velocity ratio in the area.

Processing Steps – Binning Evaluation

Interval and surface-to-depth V_p/V_s ratios. The row in blue is the measured P-S times, the column in green is the measured P-P times. V_p/V_s at the depth of interest SWH is 2.01. (Weir et al., 2018)

$V_{ m P}/V_{ m S}$	2WS	Doe	Wab.	Ireton	Swan	Gill	~Prec	PP
		Creek			Hills			time
								(ms)
Colo	2.15	1.99	2.15	2.09	2.05	2.07	2.18	971
2WS	1.991	2.09	1.88	1.86	1.981	2.02	2.156	1253
Wab.	2.148	1.88	2.03	1.80	1.78	1.94	2.06	1766
Ireton	2.088	1.88	1.80	2.03	1.814	2.09	2.06	1933
SWH	2.050	1.981	1.87	1.814	2.01	2.411	2.18	2000
Gill.	2.073	2.017	1.93	2.09	2.411	2.02	2.02	2068
~Prec.	2.179	2.02	2.06	2.06	2.18	2.02	2.02	2151
PS time (ms)	1484	1950	2674	2909	2994	3110	3298	$\overline{V_{\mathrm{P}}/V_{\mathrm{S}}}$

Processing Steps – ACP binning (30m x 30m)

Fold Map

Processing Steps – ACP binning

$$\Delta Xc = \Delta r / (1 + \frac{Vs}{Vp})$$

- Δ Xc = bin length in shot/receiver direction.
- $\Delta r = \text{group/source interval}$.
- Using the equation above, the optimum binning for P-S data is 40m x 40m.

Processing Steps – ACP binning (40m x 40m)

Fold Map

Elevation

					Elevat	ion					
830.000	840,000	850,000	860,000-	870,000-	880.000	890,000	900,000-	910.000-	920,000-	930,000-	940,000
						+++++		+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++	
++++++			++++++++	+++++	****	*****	******	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	++++++++
******			****	****	++++++	+++++	++++++	4	++++++		******
****	****	*****	******	***	****	+++++++++++++++++++++++++++++++++++++++	****	+++++++	++++++	****	+++++
+	‡ ‡	ļ.	****	++++++	***	++++++	****	++++++	++++++++++	*****	*****
+++++++++++++++++++++++++++++++++++++++	144 144	*****	***	+++++++	++++++		+++++++	****	+++++++	*****	++++++
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	******	+++++++	++++++	+++++	++++++++	*****	****	*****	
+++++++++++++++++++++++++++++++++++++++	*****	+++++	****	++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++	++++++	++++++++	+++++	++++++
*****		****	++++++++	+++++		******	+++++++	++++++	+++++	++++++	******
******	*****	+++++++	*****	******	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	******	++++++	***+*	++++++
+++++++	+++++++++++++++++++++++++++++++++++++++	++++++	++++++++	++++++++	++++++	++++++++	****	+++++-	****	++++++	*****
*******	*****	*****	+++++++++++++++++++++++++++++++++++++++	*****	+++++++	++++++		+++++++	*****	*****	******
*********	******		*****	+++++++	****	*****	+++++	****	+++++++++++++++++++++++++++++++++++++++	+++++++	+ = + +
*******	++ ⁺ ++++	******		*****	+++++++++++++++++++++++++++++++++++++++	++++++	******	****	ł		
******	+++++++++++++++++++++++++++++++++++++++	*****	****	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	****		+++++	****	++++++	
++++++++	+++++++++++++++++++++++++++++++++++++++	****	****	+++++	++++++	*****	*****	++++++	+++++++++++++++++++++++++++++++++++++++	*****	****
*******	+++++++++++++++++++++++++++++++++++++++	····	*****	++++++	++++++++++	******	++++++	** *** **	****	*****	ŧ
*** +** + + +	++++++	++++++	++++++++	****	+++++++	++++++	******	****	4 4	******	
******	*****	******	*****	+++++	******	++++++	*****	++++	****	*****	++++++
*****	*****		+++++	******	***		+++++++	****	+++++++	****	
++++++++	++++++++	+++++++		+++++++	*****	++++++++	*****	*****	****		
*** ***	+	4	*****	*****	++++++	*****		++++++			
+++++++++++++++++++++++++++++++++++++++	****	*****	+++++++	+	** ***	+++++++	+				

Receiver elevation (821 m – 947 m)

Interpolated Elevation

Receiver elevation (821 m – 947.6 m)

Processing Steps – Elevation Statics

- Highest elevation = 947.6 m. so floating datum chose to be 950 m
- Moveout velocity of the first breaks = ~2800 m/s

Processing Steps – Refraction Statics

- Refraction statics were calculated based on FB picks
- Weathering layer velocity = 700 m/s

Before elevation and refraction statics

After elevation and refraction statics

Before elevation and refraction statics

After elevation and refraction statics

After elevation and refraction statics

Processing Steps – Gain Recovery and SCAC

- Components decomposed: shot, rec, offset, CDP.
- Components used: shot, rec.

Processing Steps – Pre-decon NA Workflow

Coherent Noise Attenuation

Surface Wave Noise Attenuation

Bandpass Filter

Processing Steps – Coherent Noise Attenuation

Coherent Noise Attenuation-	
Output type	NOISE
Positive or negative dip	POS
Noise type	Source generated 🤜
Filter length (traces)	21
Trace spacing	25.0
Maximum perpendicular offset	100.0
Specify frequency-velocity pairs	2-200,6-540,7-1900,20-1900
Frequency taper (Hz)	2.0
Add statics to noise estimate?	🔍 Yes 🧔 No
Apply phase distortion reduction?	🔍 Yes 🔅 No
Reapply trace mutes?	🤗 Yes 💿 No

Processing Steps – Coherent Noise Attenuation (2-200)

 \bigcirc

Processing Steps – Coherent Noise Attenuation (6-540)

Processing Steps – Gain Recovery and SCAC

Processing Steps – Coherent Noise Attenuation

Processing Steps – Difference (Noise removed)

Processing Steps – Surface Wave NA (V=2300 m/s)

Processing Steps – Coherent Noise Attenuation

Processing Steps – Surface Wave NA

Processing Steps – BP (8,12.5,350,400)

Processing Steps – Surface Consistent Decon

- Decon operator length = 120 ms
- Operator white noise level = 0.1%

Processing Steps – without SCD (Spectral Analysis)

Processing Steps – with SCD (Spectral Analysis)

PSTM Velocity Analysis

Pre-Stack Time Migration

Signal Enhancement

Acknowledgement

- Dr. Donald Lawton
- Helen Isaac
- Kevin Hall
- CREWES sponsors
- Saudi Aramco

