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1. Feed forward network 
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1. Fully connected network
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2. Recurrent neural network (RNN) forward
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2. Recurrent neural network (RNN) backward
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3.1 Isotropic elastic wave equation
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3.2 RNN cell designed according to elastic wave equation 
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3.2 RNN cell designed according to elastic wave equation 



11

3.3 Elastic media to test forward modeling

Vp Vs 𝛒𝛒



12

3.4 Velocity fields generated by elastic RNN
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3.5 Velocity parameterization-Toy model

VP

20 shots (top)
90 receivers (top)
fdom 35Hz
Tmax 0.25sVp Vp Vp

Vs Vs Vs

𝝆𝝆 𝝆𝝆 𝝆𝝆



14

3.6 Modulus parameterization-Toy model
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3.7 Stiffness matrix parameterization-Toy model

𝝀𝝀 𝝀𝝀 𝝀𝝀

𝝁𝝁 𝝁𝝁 𝝁𝝁

𝝆𝝆 𝝆𝝆 𝝆𝝆

20 shots (top)
90 receivers (top)
fdom 35Hz
Tmax 0.25s

C11 C11 C11

C44 C44 C44

𝝆𝝆 𝝆𝝆 𝝆𝝆



16

3.8 Velocity parameterization:Part of Marmousi model
10 shots (top)
100 receivers (top)
fdom 35Hz
Tmax 0.25s
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3.8 Velocity parameterization:Part of Marmousi model
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3.9 Modulus parameterization Part of Marmousi model
10 shots (top)
100 receivers (top)
fdom 35Hz
Tmax 0.25s
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3.9 Modulus parameterization Part of Marmousi model
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3.10 Stiffness matrix parameterization Part of Marmousi model
10 shots (top)
100 receivers (top)
fdom 35Hz
Tmax 0.25s
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3.10 Stiffness matrix parameterization Part of Marmousi model
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4. Noise stress test
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4. Noise stress test
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5 Conclusions

• RNN formulation of elastic FWI is robust and admits a range 
of optimization choices (e.g., Adam)

• These are gradient based; cross-talk is managed prior to 
inversion

• Modelling error:
• Likely to cause issues for RNN/FWI
• Can potentially be addressed through training
• Can a deep learning FWI algorithm “teach itself” which physics 

rules to use?
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