

Theory-based machine learning elastic full waveform inversion with various parameterizations

Tianze Zhang, Kris Innanen, Jian Sun, Daniel Trad

2019 10 13th University of Calgary ES 136 CREWES Teck Talk

- Introduction neural networks
- Recurrent neural networks (RNN)
- An RNN formulation of elastic full waveform inversion
- Noise stress test
- Conclusions

1. Feed forward network

1. Feed forward network

1. Fully connected network

2. Recurrent neural network (RNN) forward

2. Recurrent neural network (RNN) backward

3.1 Isotropic elastic wave equation

$$\begin{cases} \frac{\partial \mathbf{v}_x}{\partial t} = \frac{1}{\rho} \left(\frac{\partial \boldsymbol{\sigma}_{xx}}{\partial x} + \frac{\partial \boldsymbol{\sigma}_{xz}}{\partial z} \right) \\ \frac{\partial \mathbf{v}_z}{\partial t} = \frac{1}{\rho} \left(\frac{\partial \boldsymbol{\sigma}_{xz}}{\partial x} + \frac{\partial \boldsymbol{\sigma}_{zz}}{\partial z} \right) \\ \frac{\partial \boldsymbol{\sigma}_{xx}}{\partial t} = (\lambda + 2\mu) \frac{\partial \mathbf{v}_x}{\partial x} + \lambda \frac{\partial \mathbf{v}_x}{\partial x} \\ \frac{\partial \boldsymbol{\sigma}_{zz}}{\partial t} = (\lambda + 2\mu) \frac{\partial \mathbf{v}_z}{\partial z} + \lambda \frac{\partial \mathbf{v}_x}{\partial x} \\ \frac{\partial \boldsymbol{\sigma}_{xz}}{\partial t} = \mu \left(\frac{\partial \mathbf{v}_x}{\partial z} + \frac{\partial \mathbf{v}_z}{\partial x} \right) \end{cases}$$

3.2 RNN cell designed according to elastic wave equation

3.2 RNN cell designed according to elastic wave equation

3.3 Elastic media to test forward modeling

3.4 Velocity fields generated by elastic RNN

3.5 Velocity parameterization-Toy model

3.6 Modulus parameterization-Toy model

3.7 Stiffness matrix parameterization-Toy model

3.8 Velocity parameterization: Part of Marmousi model

16

3.8 Velocity parameterization: Part of Marmousi model

3.9 Modulus parameterization Part of Marmousi model

3.9 Modulus parameterization Part of Marmousi model

3.10 Stiffness matrix parameterization Part of Marmousi model

3.10 Stiffness matrix parameterization Part of Marmousi model

4. Noise stress test

23

- RNN formulation of elastic FWI is robust and admits a range of optimization choices (e.g., Adam)
- These are gradient based; cross-talk is managed prior to inversion
- Modelling error:
 - Likely to cause issues for RNN/FWI
 - Can potentially be addressed through training
 - Can a deep learning FWI algorithm "teach itself" which physics rules to use?

Thanks CREWES sponsors and students Thanks Kris Innanen, Daniel Trad, Jian Sun and Zhan Niu for their discussion.