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2) Deblending Methods  

Examples:
• Sparse Radon inversion (Moore et al., 

2008;Akerberg et al., 2008)
• Iterative f -k filtering (Mahdad et al., 2011)
• Curvelet-based (Wason et al., 2011) 
• Focal transform (Kontakis and Verschuur

2015)

Examples:
• Dip filtering (Beasley et al., 1998; Beasley, 

2008)
• Adaptive subtraction (Kim et al., 2009)
• Apex Shifted Radon (Trad et al. 2012)
• Median filter (Huo et al., 2012) 
• Robust Radon (Ibrahim and Sacchi 2014). 
• Migration operators (Ibrahim and Sacchi

2015)

Denoising-based Inversion-based

Deblending (separation) methods 



3) Challenges: a) Strong Source Interferences

Numerically blended Gulf of Mexico data



Numerically blended Gulf of Mexico data

Strong 
interferences
(Fitting outliers) 

3) Challenges: a) Strong Source Interferences
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Misfit Regularization (penalty)

Robust Radon Operators 5

1.3 Inversion of Time-Variant Radon Operators

The adjoint operator LT back projects information in one direction which is the initial step for inversion.

When operator L is a matrix, the adjoint is simply the Hermitian transpose of this matrix. Inversion of L

operator depends on the number of independent data measurements (ND) and independent model parameters

(NM). If ND < NM, the problem will be under-determined inverse problem and the solution is not unique.

Although there are often more data measurements than model parameters, many of the measurements are

linearly dependent. Additionally incompleteness of data and the existence of noise result in ill-conditioned

inverse problem with non-unique solution. In order to overcome incomplete data due to seismic aperture ?

proposed to use weighting functions. These functions will reduce data smoothly to zero at acquisition edges

to avoid convolving the data with boxcar function. ? proposed estimating the data instead of weighting

to honour the given data. This method used the priori of maximum entropy as regularization for least

squares inversion. Least squares approach use existing data for missing data estimation which is acceptable

approach. The misfit between the data and model to be minimized is defined by the cost function,

J = ⇤Lm� d⇤22 + µ⇤m⇤22. (1.6)

This cost function will be minimum when its derivative with respect to the model parameters is equal to zero.

If the matrix L have large condition number then matrix LTL is more ill conditioned. Ill-conditioned inverse

problems have vast model domain. Inversion of ill-conditioned matrix LTL by non-regularized least squares

will produce unstable model. Instability results from dividing by small eigenvalues when inverting the matrix

LTL. Therefore, regularization is required to enhance model stability. Incorporating regularization term in

the cost function produce more specific and stable model. This extra term imposes a priori criterion that

incorporate some information about the desired model. The first obvious choice for regularization is the

L2 norm priori. Regularization using L2 norm leads to a linear system equations. The parameter µ in the

previous equation is called the trade-o� parameter. Trade-o� determines how much weight the regularization

term have with respect to the misfit term. Larger µ mean that there are more emphasis on reducing model

L2 size than reducing data misfit. The optimal value of the trade-o� parameters is determined from the

L-curve. L-curve plots the relation between the model norm and data misfit. There are varieties of priori

that can be implemented depending on the desired model. To generalize the operator inversion, the cost

function can be written as

J = ⇤Lm� d⇤pp + µ⇤m⇤qq. (1.7)

where p and q represent the di�erent norms that can be used to impose either sparsity and/or robustness.

The previous equation can be converted to the L2 form using weighting matrices

⇤x⇤pp =
�

i

|xi||xi|p�2|xi| = xTQx = xTWTWx = ⇤Wx⇤22 (1.8)

1 Scratch

m(�, v) (1)

d = Lm (2)

⇤d = LTm (3)

(4)

(m,LTd)model space = (Lm,d)data space (5)

⇤d = LTd = LTLm (6)

(7)

LTL ⇥= I (8)

(9)

⇥J

⇥m
=

⇥

⇥m

�
(Lm� d)T (Lm� d)

⇥
= 0

(10)

J = ⇤Lm� d⇤22 + µ⇤m⇤11 (11)

1

ROBUST INVERSION

We assume that the data are contaminated with noise and therefore we pose the estimation

of m via the minimization of the vector of residuals

r = d� Lm . (9)

This is an ill-posed problem and, therefore, a regularization term must be included to

estimate a unique and stable model m. For example, the ⌅2 regularization term results in

smooth estimates of m. On the other hand, and ⌅1 regularization term induces solutions

that are sparse. The inversion problem can be formulated by minimizing the following cost

function

J =⇤r⇤11 + µ⇤m⇤qq

=⇤d� Lm⇤pp + µ⇤m⇤qq. (10)

where the first term on the right hand side is the misfit term and the second term is the

regularization term. In both terms we have assumed ⌅p and ⌅q norms are given by the

general expressions ⌅p =
�

i |ri|p and ⌅q =
�

i |mi|q. By minimizing the cost function with

respect to the unknown vector of Radon coe⇥cients m one finds a solution that honors the

observations d. The parameters p and q represent the exponent of the p-norm of the misfit

and the q�norm of the model regularization term, respectively.

Traditionally, if the Radon model is expected to be smooth, we should adopt q = 2

and if expected to be sparse, we should adopt q = 1. The classical least-squares (non-

robust) Radon transform uses quadratic regularization corresponding to the selection p = 2

and q = 2 (Hampson, 1986). The classical hight resolution (non-robust) Radon transform

corresponds to p = 2 and q = 1 (Thorson and Claerbout, 1985; Sacchi and Ulrych, 1995b;
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Robust Non-robust Least Squares Sparse (High resolution)
Hampson 1986 Thorson&Claerbout 1985;

Sacchi&Ulrych 1995; 
Trad et al. 2003 

Claerbout&Muir 1973;
Guitton&Symes, 2003;
Ji, 2006, 2012;
Ibrahim and Sacchi 2014,2015

3) Challenges: a) Strong Source Interferences
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4) Stolt-based Radon Transform



Apex Shifted Hyperbolic Radon (ASHRT) Transform

42

models the data by summing the data over the apex time, apex location and velocity of the reflection

hyperbola. To speed up the ASHRT computation for seismic data interpolation, citeTrad2003b

proposed using the Stolt imaging (migration) operator. Stolt (1978) introduced this method to

compute the subsurface image of a constant velocity media by mapping the data in ! � k domain

and using Fast Fourier Transformation (FFT). In this work, we do not use the Stolt migration

operator to image the subsurface but we use it to focus reflection hyperbolas. Therefore, we design a

new fast ASHRT operator using the Stolt operator for fast simultaneous seismic sources separation.

2.2 Theory

2.2.1 Robust Radon Transform

Removing interferences by using their incoherency in common receiver gathers requires a transform

that optimally benefits from the reflections coherency. Since seismic data reflections closely resemble

hyperbolas, a transform that use hyperbolic basis will the most suitable one. All transforms that

use hyperbolic basis are variants of the classical Radon transform (Radon, 1917; Beylkin, 1987).

However, reflection hyperbola apexes in common receiver gathers are not centred at zero o↵set

location in the case dipping subsurface layers Ibrahim and Sacchi (2014c). Therefore, Apex Shifted

Hyperbolic Radon transform (ASHRT) which is an extension for the classical hyperbolic Radon

transform is the most suitable one. Seismic reflection data can be modelled using superposition of

the apex shifted hyperbolas as follow

d(t, h) =
amaxX

amin

vmaxX

vmin

m(⌧ =

r
t2 � (h� a)2

v2
, v, a) (2.3)

where d is the modelled seismic data, m is the ASHRT model, t is time, h is receiver o↵set, v

is velocity. The parameters ⌧ and a represent the reflection hyperbola apex time and location,

respectively. The ASHRT model can be estimated using the following equation

em(⌧, v, a) =
hmaxX

hmin

d(t =

r
⌧2 +

(h� a)2

v2
, h) (2.4)
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✏m is computed via the following expression

✏m = bm
max(|m|)

100

where bm is a tuning parameter that is the related to the level of sparsity in the mode l(Trad et al.,

2003; Ji, 2006, 2012). Including these weighting matrices allow us to convert the non-quadratic cost

function into a sequence of quadratic minimization problems for fixed weighting matrices Wr and

Wm. The Radon cost function (2.7) can be rewritten in the standard form (Hansen, 1998) by a

simple change of variable u = Wmm

J = kWr [L(Wm)�1u� d]k22 + µkuk22. (2.13)

This new cost function (2.13) is minimized by the method of conjugate gradients and followed by

updating weighting matrices Wr and Wm. We follow the method described by Trad et al. (2003)

where the regularization term in equation (2.13) is omitted by setting µ = 0 and using the number

of conjugate gradients iterations as the trade-o↵ parameter to speed computation (Hansen, 1998;

Trad et al., 2003).

2.2.2 Stolt operator

Using the imaging principle of exploding reflectors (Claerbout, 1985) and constant velocity as-

sumption, the Stolt operator can be used to estimate the subsurface model. This estimated model

em(⌧, v, x) is related to the data recorded at the surface d(t, x) by the following relationship

em(⌧, v, x) =

Z Z
d(!, kx) e

�ikxx�i!⌧ (v)⌧ d! dkx (2.14)

where x represents the horizontal axis and !⌧ is the Fourier dual of the zero o↵set time ⌧ and is a

function in velocity through the modified dispersion relationship (Yilmaz, 2001)

!⌧ =
p

!2 � (vkx)2 (2.15)

Equation (2.14) can be rewritten by changing integration variable from ! to !⌧ as

em(⌧, v, x) = S

Z Z
d(! =

p
!2
⌧ + (vkx)2, kx) e

�ikxx�i!⌧ (v)⌧ d!⌧ dkx (2.16)
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where S = v (!⌧/!) is a scaling factor resulting from the change of variables. Similarly, the forward

Stolt modelling operator can be written as

d(t, x) =

Z Z Z
m(!⌧ =

p
!2 � (vkx)2, v, kx) e

ikxx+i!t d! dkx dv (2.17)

Equations (2.16) and (2.17) can be written as a sequence of three operators

LT = FFT�1
!⌧ ,kx

MT

!,kx
FFTt,x, (2.18)

and similarly the forward (modelling) operator can be written as

L = FFT�1
!,kx

M!⌧ ,kx FFT⌧,x, (2.19)

where, M is the ! � k mapping operator and FFT is the Fast Fourier Transform operator.
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Figure 2.4: The steps for computing the Stolt model. (a) Input data. (b) Data in ! � kx
domain after FFT. (c) Data after mapping to !⌧ � kx domain. (d) Stolt model in time
domain.

Although the Stolt operator is derived with a constant velocity assumption, it can be used to

construct the ASHRT model with multiple velocities. Since each Stolt model represents one plane

inside the ASHRT model cube at constant velocity, the ASHRT model is collection of all these planes.

We construct the ASHRT model using several Stolt models each with di↵erent velocity. The classical

ASHRT operator has a computational cost of O(na ⇥n⌧ ⇥nv ⇥nx), where na, n⌧ , nv and nx are the

Stolt-based ASHRT Transform

4) Stolt-based Radon Transform

Trad, D. 2003, Interpolation and multiple attenuation with migration operators, Geophysics 68 (6), P. 2043–
2054
Ibrahim and Sacchi, 2014, Simultaneous source separation using a robust Radon transform, Geophysics 
79(1): V1-V11.
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The double square root equation for diffractions travel-time 

Ibrahim , A, Trenghi, P. and Sacchi, M. D. 2018, Simultaneous reconstruction of seismic reflections and 
diffractions using a global hyperbolic Radon dictionary, Geophysics 83 (6), V315-V323

We can use this equation to define the new Asymptote and Apex Shifted Radon 
(AASHRT)

4) Stolt-based Radon Transform: Diffractions
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The time domain AASHRT operators are 

The Stolt-based AASHRT operators are 

4) Stolt-based Radon Transform: Diffractions



5) Examples: Marmousi – Common Receiver Gather  
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5) Examples: Marmousi – Common Shot Gather 
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5) Examples: SEAM – Common Receiver Gather
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5) Examples: SEAM – Common Shot Gather 
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5) Examples: Gulf of Mexico – CRG 



5) Examples: Gulf of Mexico - CSG



6) Conclusion 

• We have implemented an asymptote and apex shifted 
hyperbolic Radon transform with a Stolt
migration/demigration operator as its kernel to speed up 
computation. 

• The new transform dictionary is designed to closely 
match both reflections and diffractions.

• Synthetic and field data results show that the inversion 
based deblending using Stolt operators can significantly 
attenuate source interferences. 

• The main challenge is a trade-off between 
completeness of the dictionary (range and sampling 
density of the operator parameters) and the 
convergence rate of inversion. 

• Future work: Hybrid transforms and Local transforms.


