Strong form

- The \(i^{th} \) component of the strong (differential) form of the full elastic wave equation, in an isotropic medium \(\Omega \subset \mathbb{R}^d \), is

\[
\rho \ddot{u}_i = \partial_t \sigma_{ij} + f_i, \quad x \in \Omega, \ t > 0.
\]

(1)

- \(u = (u_1, \ldots, u_d) \) is the displacement vector.
- \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d \)
- \(\rho \) is the density.
- \(t \) denotes time differentiation.
- \(\sigma_{ij} \) are the stresses.
- \(\sigma_{ij} = \lambda \left(\nabla \cdot u \right) \delta_{ij} + 2\mu u_{ij} \)
- \(u_{ij} \) is the \(i^{th} \) component of the applied force.
- sum over repeated indices.
- \(\sigma_{ij} = \frac{1}{2} (\partial_i u_j + \partial_j u_i) \)
- \(\lambda \) and \(\mu \) are the Lamé parameters.

Weak form

- Multiply both sides of equation (1) by an arbitrary function \(v(x) \) and integrate by parts to obtain the weak (integral) form,

\[
\int_{\Omega} \rho \ddot{u} v \, d\Omega + \int_{\Omega} \sigma_{ij} \partial_i u_j v \, d\Omega = \int_{\Omega} f_i v \, d\Omega + \int_{\partial\Omega} \sigma_{ij} n_j \left(\partial_i u_i \right) v \, dS
\]

(2)

- Pseudospectral methods choose a set of points \(\{x_0, \ldots, x_N\} \) in \(\Omega \) and a set of functions \(\{\phi_0, \ldots, \phi_N\} \) in \(L^2(\Omega) \) with the property

\[
\phi_{m}(x_0) = \delta_{mn}
\]

- Write the displacements as linear combinations of the basis vectors

\[
u_i(x, t) = \sum_{m=0}^{N} u_i(x_0, t) \phi_m(x)
\]

- Equation (2) is enforced for \(v = \phi_m(x) \), for all \(m = 0, \ldots, N \)

Boundary conditions in 2D

- Split the surface integral over the \(\alpha = N, S, E \) and \(W \) boundaries

\[
\int_{\partial\Omega} \sigma_{ij} n_j \left(\partial_i u_i \right) v \, dS = \sum_{\alpha} \int_{\partial\Omega_{\alpha}} \sigma_{ij} n_j \left(\partial_i u_i \right) v \, dS
\]

- The free surface condition \(\sigma_{ij} \cdot n = 0 \) implies

\[
\int_{\partial N} \sigma_{ij} n_j \left(\partial_i u_i \right) v \, dS = 0.
\]

- Second order absorbing boundary conditions along a vertical boundary at \(x = x_{\text{max}} \) can be enforced by substituting into the stresses

\[
\dot{\partial}_1 u = -\frac{1}{V_p} V_p - V_s \dot{\partial}_2 w, \quad \dot{\partial}_2 w = -\frac{1}{V_s} V_p - V_s \dot{\partial}_2 u.
\]

- Similarly, at \(z = z_{\text{max}} \) the substitution is

\[
\dot{\partial}_1 u = -\frac{1}{V_s} V_p - V_s \dot{\partial}_1 w, \quad \dot{\partial}_2 w = -\frac{1}{V_s} V_p - V_s \dot{\partial}_1 u.
\]

- At \(x = 0 \) the signs are switched.

Time-integration

- Substituting the boundary conditions into equation (2) produces a system of ordinary differential equations

\[
\mathbf{M} \ddot{\mathbf{U}}(t) + \mathbf{A} \mathbf{U}(t) + \mathbf{K} \mathbf{U}(t) = \mathbf{F}(t).
\]

which can be time-stepped numerically.

Domain decomposition

- In domain decomposition the model parameters are split up into smaller constant regions. This can be done by averaging the parameters at the 4 corners, or fitting a polynomial to the original model and evaluating at the cell centers.

- Example.

- Consider a simple two-layer medium with a free-surface and absorbing sides and bottom. The source is a Ricker wavelet applied at a single node.

- At the interface between elements we enforce the conditions

 - Continuity of displacement: \(u_i|_{\Omega_1} = u_i|_{\Omega_2} \)
 - Continuity of traction: \(\sigma_{ij} \cdot n|_{\Omega_1} = \sigma_{ij} \cdot n|_{\Omega_2} \)

- The first is done by making the functions \(\phi_m(x) \) piecewise continuous at the interfaces.

- The second we get for free by deleting all interior surface integrals.

\[
\sum_{\alpha} \int_{\partial\Omega_{\alpha}} \sigma_{ij} n_j \left(\partial_i u_i \right) v \, dS = 0.
\]

- The resulting system is very sparse.

- More complicated models can be built by using many smaller elements, akin to building an image from pixels.

- Acknowledgments.

 - We gratefully acknowledge the continued support of mprime through the POTS1 research project and its industrial collaborators, the support of NSERC through the CREWES consortium and its industrial sponsors, and support of the Pacific Institute for the Mathematical Sciences.