Repercussions of available long offset, random noise and impedance contrast on AVO analysis
Sergio Romahn and Kris Innanen
sergio.romahnreynos@ucalgary.ca

Introduction
The amplitude variation with offset (AVO) response is sensible to several factors that may affect the feasibility of doing this kind of analysis. This work measures how the available long offset, level of random noise and impedance contrast between the reservoir and seal, impact on intercept, gradient and curvature estimations. Density, P- and S-velocity logs of and oil producing sand, were used for this experiment. Gas and water scenarios were reproduced by using the Gasmann theory (Fig. 1). The reflection coefficient variation with angle was modeled by applying Zoeppritz equations (Fig. 2). Fig. 3 shows the synthetic seismic gathers constructed by using the wavelet and well-logs in Fig. 1 and applying Zoeppritz equations.

![Image of well log data of an oil-producing well](image1)

FIG. 1. Well log data of an oil-producing well. The original logs (green) correspond to oil filling the pore space. The red and blue lines correspond to gas and water, respectively. A zero-phase Ricker wavelet with dominant frequency of 25 Hz properly resolves the reservoir.

![Image of reflection coefficient variation with angle of incidence (or offset) for the three fluid scenarios.](image2)

FIG. 2. Reflection coefficient variation with angle of incidence (or offset) for the three fluid scenarios. Pre-critical angles smaller than 45 degrees were used in this experiment.

![Image of synthetic seismic gathers with AVO response for gas, oil and water sands.](image3)

FIG. 3. Synthetic seismic gathers with AVO response for gas, oil and water sands. The intercept and gradient parameters are derived by fitting equation 1 to the amplitude vs angle points. The intercept vs gradient plot discriminates fluids.

\[R_p(\theta) = R_{\text{AI}} + G \sin^2 \theta + R_{\text{GP}} \sin^2 \theta \tan^2 \theta \]

Eq. 1. Wiggins’ reformulation for Aki-Richards approximation of Zoeppritz equations (Aki and Richards, 2002; Russell and Hampson, 2006).

![Image of laboratory procedure and data analysis](image4)

Fig. 4. Effect of random noise on the amplitude vs angle plot and intercept vs gradient plot. Figure 5 shows the impact of reducing the maximum angle. Both factors produce instability when estimating the AVO parameters. We can observe the actual effect of noise by repeating several times the parameter estimation for a fixed S/N and maximum angle (Fig. 6 and 7). The standard deviation of these measurements provides a sense of the quality of the AVO-parameter estimations (Fig. 8). The reference for measuring the error was the case with no noise and using angle traces up to 45 degrees.

![Image of results showing standard deviation as a function of S/N and maximum angle.](image5)

Fig. 9. Shows the standard deviation (SD) as a function of S/N and maximum angle. The SD indicates the quality of the AVO-parameter estimation. Estimations with error higher than 20% are unstable. The error increases as the impedance contrast decreases. These results can be used for deciding the maximum offset when a new seismic survey is designed or for time-lapse seismic purposes.

Conclusions
1) Random noise and available long offset are variables that affect the estimation of AVO-parameters. 2) The intercept is minimally affected by reducing offset and slightly affected by random noise. 3) The gradient and curvature are strongly impacted by both noise and maximum available offset. 4) The error tends to be higher if the target has low impedance contrast. 5) Long offsets provide stability when fitting the amplitude vs angle points in the presence of noise.

Acknowledgements
We thank the sponsors of CREWES for their support. We also acknowledge support from NRC through the grant CRDPI 461179-13. Author 1 thanks PEMEX and the government of Mexico for funding his research.

References