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Abstract

The scattering theory can be used as a powerful theoretic
approach to understand and process seismic data. Exploring
inverse scattering series, which have been used to remove
multiples from seismic data, depends on understanding how
these series generate primaries and multiples. The inverse
scattering methods depend on an understanding of how the
forward scattering series generates primaries and multiples. In
this work, we study the forward scattering series for elastic
media in order to identify on which terms in inverse scattering
series are important for imaging and inversion. Primary
reflections are described by all of the terms in the series
excluding the first term.

Forward scattering series

We consider the two dimensional Born series (Innanen, 2009):

P to P scattering by a single interface

Where 𝑥𝑥𝑔𝑔, 𝑧𝑧𝑔𝑔 and 𝑥𝑥𝑠𝑠, 𝑧𝑧𝑠𝑠 are respectively the position of
the receiver and source. The function 𝐺𝐺0 describes
propagation in the reference medium, and can be written
as a 2D Green’s function bilinear form.

Numeric examples: single interface

Conclusions

The scattering theory is applied to investigate a mapping
method between the earth model and seismic data. The Born
series is established and full series terms are derived. Theses
series were able to predict and interpret seismic reflection
data including primary and multiple events. To identify on
which terms in inverse scattering series are important for
imaging and inversion the forward scattering series for elastic
media is investigated. The results show that the exact curve of
𝑅𝑅𝑃𝑃𝑃𝑃 is complex beyond critical angles, while the
approximation curve reminds real and decreasing for all
opening angle that is smaller than the critical angles.
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This equation plays a pivotal role in scattering theory. Based on
this equation the wavefield in an actual medium is the sum of
the wavefield in a reference medium and integral that
represent the scattered wavefield due to perturbation .

The pp scattering potential in terms of velocity and density
perturbations is
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The higher order terms in the Born series have an
important role when the perturbation value is lager while
the higher order terms become less important for small
value of perturbation and tha Born approximation is valid
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In this expression, the first term propagates outward from
the source directly to receiver. The second term is a
reflected wave. The reflection coefficient, which is the
ration of the amplitude of the incident and reflected
wave, for the Born approximation can be written as (𝑧𝑧𝑔𝑔 =
𝑧𝑧𝑠𝑠 = 0)

Figure 1: The comparison between the synthesized values and the
actual values of Rpp for small and large layer contrast models.
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Where                     is the opening angle.𝜎𝜎 = 2𝜃𝜃
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