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Summary
Constant phase rotations and constant time shifts
are the constant and slope of a polynomial
approximation to the seismic wavelet phase. Errors
in the estimation of either one cause a bias in the
subsequent estimation of the other. It follows that
estimations of time-shifts followed by subsequent
phase estimates, as is commonly done in well tying,
is subject to this bias meaning that alignment errors
cause compensating phase errors and a very
questionable solution. A strategy is presented to
overcome this bias whereby the alignment is
estimated though correlation of trace envelopes and
it is demonstrate that this is much more accurate.
This strategy is then extended to the nonstationary
case where, in a series of numerical experiments, it
is demonstrated that nonstationary phase rotations
and time delays can be reliably measured with good
quality data.

An example of straight-line fitting to noisy data with both a 
simultaneous and biased solution.  The slope and intercept of the 
true line are 0.5 and 0.1 while the simultaneous least-squares 
solution estimates 0.498 and 0.099.  In the biased case, the slope is 
constrained to be 0.4 and the resulting least-squares estimate for 
the intercept is then 0.148.

A portion of a seismic trace is shown together with its envelope 
(positive and negative) and a number of phase rotations.  The 
envelope contains all of the phase rotations.
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Fundamental motivation
Working from the convolutional model for a seismic
trace, a synthetic seismogram intended to be
compared with processed seismic data has two basic
uncertainties: its starting time and the wavelet
phase. The first arises because the log information is
not available for the shallow section and the second
arises because of shortcomings in the deconvolution
process. Assuming that the wavelet phase can be
approximated by a constant, then is follows that the
crosscorrelation of the synthetic, 𝑢𝑢(𝑡𝑡), with the real
trace, 𝑠𝑠(𝑡𝑡), is given (in the frequency domain) by

�𝑐𝑐𝑢𝑢𝑢𝑢 = �𝑐𝑐𝑤𝑤0𝑤𝑤0 𝑓𝑓 �𝑐𝑐𝑟𝑟0𝑟𝑟0 𝑓𝑓 𝑒𝑒𝑖𝑖 𝜃𝜃+2𝜋𝜋𝜋𝜋Δ𝑡𝑡

where �𝑐𝑐𝑤𝑤0𝑤𝑤0 𝑓𝑓 is the Fourier transform of the
wavelet autocorrelation, �𝑐𝑐𝑟𝑟0𝑟𝑟0 𝑓𝑓 is a similar
construct for the reflectivity, 𝜃𝜃 is the wavelet phase,
and Δ𝑡𝑡 is the time shift (or delay) of the reflectivity.
Since autocorrelations are zero phase this is a
statement that the phase of the crosscorrelation is a
linear function of frequency whose intercept gives
the wavelet phase and whose slope give the
reflectivity delay.

Thus both the slope and intercept of the phase of
the crosscorrelation function must be measured.
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Measurement of Phase: direct search or 
analytic solution

(Left) A 30 Hz Ricker wavelet and the same wavelet after a phase 
rotation of 119.2𝑜𝑜.  (Right) The curve shows the objective 
function 𝑠𝑠 𝑡𝑡 − 𝑅𝑅𝜃𝜃𝑢𝑢 𝑡𝑡 2as mapped out by direct calculation at all 
integer phase angles between -180 and 179.  The curve has a 
minimum at 119𝑜𝑜 while the analytic solution gets exactly 119.2𝑜𝑜.
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Why phase and delay are correlated:
Straight-line fitting, biased or simultaneous

Phase independence of trace envelope
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Measurement of delay without phase rotations

At left are the reference trace 𝑢𝑢(𝑡𝑡), the seismic trace 𝑠𝑠(𝑡𝑡), and 
their envelopes.  By construction 𝑠𝑠(𝑡𝑡) is identical to 𝑢𝑢(𝑡𝑡) except for 
a 0.075 sec time shift.  At right are the three possible correlations 
and all three succeed at detecting the shift because there is no 
phase rotation.  A red dashed line indicates the correct lag.
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Measurement of delay with phase rotations

Similar to #6 except that the seismic trace 𝑠𝑠(𝑡𝑡) differs from 𝑢𝑢(𝑡𝑡)
by both a 0.075 sec time shift and a 90𝑜𝑜 phase rotation.  On the 
right, the maximum of the standard correlation 𝑢𝑢 ⊗ 𝑠𝑠 fails to 
pick the correct time shift but the other two correlations do 
correctly find the shift.

Nonstationary case: phase only 
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An initial minimum-phase seismogram, 𝑢𝑢(𝑡𝑡), (top panel) is subjected to a time-variant phase 
rotation where the phase is linearly increasing, and no time-variant delay, to produce trace 𝑠𝑠(𝑡𝑡).  
Both time–variant delay analysis and time-variant constant phase analysis were conducted.  The 
middle panel shows that only the envelope crosscorrelation gets the correct zero delay.  In the 
bottom panel, the time-variant phase estimates are seen to be very accurate. Crosscorrelation 
values (top panel) are with respect to 𝑢𝑢(𝑡𝑡).

Nonstationary case: delay only 
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Here is a case of estimating time-variant delay when there are no phase rotations.  Either 
normal or envelope crosscorrelations estimate the delay correctly.  Phase estimates are 
shown as made after delay removal and without delay removal and only the former are 
correct.  Versions of 𝑠𝑠(𝑡𝑡) are shown corrected for the estimated delay (purple) and corrected 
for the erroneous phase estimated without delay removal.  Only the former correlates well 
with 𝑢𝑢(𝑡𝑡).

Nonstationary case: phase and delay 

In this case, both a time-variant delay and a time-variant phase have been applied to the 
reference trace. The envelope correlation method has successfully estimate the delay while 
conventional correlation has not.  When this delay is removed, the phase is estimated with 
good accuracy.  When the phase is estimated without first removing the delay, the result is 
nearly zero.  

Conclusions
Both nonstationary delay and nonstationary phase can be estimated with 

considerable detail provided that the delay is estimated and removed first 
with an envelope crosscorrelation. The phase estimate then follows by 
standard methods.
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