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Abstract

I applied a bi-objective optimization strategy to search the best seismic
survey design in illumination and cost senses. Due to the conflicting
goals of obtaining a good subsurface illumination at the lowest possi-
ble cost it is not possible to obtain an optimum survey in both senses
simultaneously, but instead it is possible to get a set of surveys, called
Pareto Front, that shows the trade-off between these conflicting objec-
tives. As a result, the Pareto Front could be used as a decision tool
to tune quality versus cost. I used the mixed-integer, free-derivative,
nonlinear optimization algorithm called Particle Swarm Optimization and
Mesh Adaptive Direct Search. The Particle Swarm Optimization part is
used to escape local minima while the mixed-integer part is used to deal
with integer aspects of a seismic survey design like the number of re-
ceivers and sources, to name but a few. I tested the optimization using
a synthetic model and compared the final migrated seismic images. The
results show good quality imaging and better cost.

Method

The survey design bi-optimization is composed of the following steps:
1. Choose a set of parameters that describe the acquisition with

their upper and lower bounds. Some of these parameters could
be integers while others are real numbers.

2. Define the illumination and cost objective functions.
3. These functions will guide the PSO-MADS algorithm in the

search of seismic surveys with high illumination quality and low
cost.

4. The Pareto Front that will be produced by the bi-optimization will
show the trade-off between illumination and survey cost.

Illumination objective function
For each pair of specular rays I calculate their intersection points with
the surface. If for a specular ray i these two points are xi and yi we
measure the set of distances d(sk , xi) and d(rj, yi), where sk is a source
and rj is one of the receivers in the spread of sk . The sum of the minimum
of all these distances is the illumination objective function:

OI =
∑

i

min(d(sk , xi) + d(rj, yi)).

Cost objective function
To simplify, I assume that the cost of a seismic survey is proportional to
the number of sources, The objective function is then defined as

OC = Ns

where Ns is the number of sources.
Pareto Front
If there are two surveys x (1) and x (2) with illumination and cost values
(O(1)

I ,O(1)
C ) and (O(2)

I ,O(2)
C ), respectively, it is said that x (1) dominates x (2)

if O(1)
I ≤ O(2)

I , C(1)
I ≤ C(2)

I and at least one of these relationships is a
strict inequality. The Pareto Front is defined as the set of surveys that
are not dominated by any other survey.
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Dominance relationship. Left: Dominance zone of x (4). Right: Com-
bined dominances. Non dominated points x (1), x (4) and x (6) belong to
the Pareto Front.

Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a stochastic search procedure
which uses a group of points that explores the solution space at differ-
ent velocities. Each particle xi in iteration i advances using the following
expressions:

xi+1 = xi + vi∆t
vi+1 = avi + b1Di+1(xi − yi) + b2Ei+1(xi − ŷi),

where vi is the velocity of particle xi+i and is determined by three terms:
a governs the inertial term, bi the cognitive term and b2 the social term.
Mesh Adaptive Direct Search algorithm
Mesh Adaptive Direct Search (MADS) is an optimization algorithm which
explores locally an objective function using polling around a point.

Bi-objective optimization
In order to optimize the two objective functions OI and OC I minimize a
convex combination of them:

min(w1OI + w2OC), (1)

for several values of w1 and w2 using the PSO-MADS algorithm. This
procedure generates surveys along the Pareto Front in most cases.

Example

Left: Velocity model with the region of interest is highlighted.
Right: Specular rays traced from the region of interest.
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Left: Pareto Front obtained from the bi-objective optimization.
Right: Source locations of the selected surveys. S1 is marked by circles,
S2 by plus signs and S3 by asterisks.

Name Shot zone (m) Live stations ∆g (m) ∆s (m)
S1 6125 − 9085 1 − 100 50 200
S2 5495 − 9985 1 − 100 50 100
S3 4665 − 9455 1 − 100 50 50

Parameters of surveys S1, S2 and S3.

RTM migrations of the selected surveys S1, S2 and S3. Above are S1
with 15 shots and S2 with 45 shots. Below is S3 with 96 shots.

RTM migrations from a usual survey (100 shots) and the complete sur-
vey (1000 shots).

Future Work
1. Test the technique with more complex synthetic examples that

will show how the bi-optimization obtains designs more difficult
to reach using usual design rules.

2. Test more complete objective functions. For example for the
illumination part I could use rose diagrams, point spread
functions or image resolution measures.

3. Besides aiming the design to obtain a good migrated image of
the region of interest I could also try to predict the response of
the survey to other processes like 5D interpolation or footprint
noise suppression, for example.

4. Extend the technique to 3D models and to multicompoment data
by trying to improve the response of the S-wave image too.

5. Propose a field experiment to test the optimized designs.
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