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Abstract
We first express stiffness matrix of tilted transversely isotropic (TTI) media
in terms of the normal and tangential fracture weaknesses. Using pertur-
bations in stiffness parameters for the case of an interface separating an
isotropic medium and a TTI medium, we derive a linearized P-to-P reflec-
tion coefficient as a function of fracture weaknesses, in which titled frac-
ture weaknesses involving effects of tilt angle and fracture weaknesses
emerge. Following a Bayesian framework, we propose an inversion ap-
proach to use amplitude differences between seismic data along two az-
imuths to estimate the tangential fracture weakness and tilted normal and
tangential fracture weaknesses based on the derived and simplified reflec-
tion coefficient. Synthetic tests confirm that the unknown parameter vector
involving the tangential fracture weakness and tilted fracture weakness-
es is estimated stably and reliably in the case of seismic data containing a
moderate Gaussian noise. The inversion approach is also applied to a field
data set acquired from a fractured carbonate reservoir, from which reason-
able results of tilted fracture weaknesses are obtained. We conclude that
the proposed inversion approach may provide additional proofs for fracture
characterization, and it also make the estimation of tilt angle from observed
seismic data for fractured reservoirs be available.

Theory and Method
1. Stiffness matrix related to fracture weaknesses

The stiffness matrix of a TTI medium, CTTI, is expressed using the stiffness
matrix of a corresponding VTI medium, CVTI, which is given by (Auld, 1990)

CTTI = MνCVTIMT
ν , (1)

where MT
ν is the transpose of Mν, ν denotes the tilt angle. In the case of

ν = 90◦, the TTI medium becomes the HTI medium, and in the case of
ν = 0◦, the TTI medium becomes the VTI medium.

In the linear slip model, the stiffness matrix of the HTI medium is given by
(Schoenberg and Sayers, 1995)

CHTI =

 M(1−δN) λ(1−δN) λ(1−δN) 0 0 0
λ(1−δN) M(1−χ2δN) λ(1−χδN) 0 0 0

λ(1−δN) λ(1−χδN) M(1−χ2δN) 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ(1−δT ) 0
0 0 0 0 0 µ(1−δT )

 , (2)

where M = λ + 2µ, λ and µ are Lamé constants of the homogeneous
isotropic host rock, χ = λ/M, and δN and δT are the normal and tangential
fracture weaknesses.

Letting the tilt angle ν be 90◦ and CTTI be equal to CHTI, we use equation
1 to obtain the expression of the stiffness matrix of the corresponding VTI
medium

CVTI = (Mν=90◦)
−1 CHTI

(
MT

ν=90◦

)−1
, (3)

where (Mν=90◦)
−1 and

(
MT

ν=90◦
)−1

are the inverse matrices of Mν=90◦ and
MT

ν=90◦, respectively.

Combining equations 1-3, we obtain the stiffness parameters of the TTI
medium in terms of fracture weaknesses.

2. Derivation of P-to-P reflection coefficient for TTI media

Using the derived stiffness parameters, we first express perturbations in
stiffness parameters for the case of one interface separating an isotropic
layer and a TTI layer. The derived linearized reflection coefficient for the
interface separating an isotropic layer and a TTI layer is given by

RPP(θ, φ) = 0.5 sec2 θRM −
[
4 sin2 θ + 2

(
cos2 ν − cos4 ν

)]
Rµ

+
(
1− 0.5 sec2 θ

)
Rρ −

[
1/4 sec2 θ(1−2g)2+g(1−2g) tan2 θ cos2 φ

+g2 cos2 θ cos4 ν−g(1−2g) tan2 θ cos2 φ cos2 ν
g(1−2g) cos2 ν+g2 sin2 θ tan2 θ cos4 φ sin4 ν

]
δN

+ g
[

2 sin2 θ cos2 φ−tan2 θ cos2 φ
2 sin2 θ cos2 φ cos4 ν+sin2 θ tan2 θ cos4 φ sin4 ν

−4 sin2 θ cos2 φ cos2 ν+tan2 θ cos2 φ cos2 ν+sin2 θ cos2 ν

]
δT ,

(4)

Theory and Method
where g = µ/M, and RM, Rµ and Rρ are reflectivities of P- and S-wave
moduli and density, respectively. Based on the reflection coefficient,
we express the difference between the reflection coefficients at two az-
imuthal angles (φ1 and φ2)

∆RPP =RPP(θ, φ2)− RPP(θ, φ1) = −g sin2 θ (cos 2φ2 − cos 2φ1) δT

− g(1− 2g) tan2 θ
(

cos2 φ2 − cos2 φ1
)
δνN

+ g(4 sin2 θ − tan2 θ)(cos2 φ2 − cos2 φ1)δνT ,

(5)

where δνµ = sin2 ν∆µ/µ, δνN = sin2 νδN and δνT = sin2 νδT are named
tilted S-wave modulus reflectivity and fracture weaknesses. Under the
assumption that the P-wave incidence angle is less than 30◦, we neglect
the term proportional to sin2 θ tan2 θ, and in the case that fractures have
a high tilt angle, we neglect the term proportional to cos4 ν.

3.Azimuthal seismic inversion for tangential fracture weaknesses
and tilted fracture weaknesses

We next present an approach of using azimuthal seismic amplitude dif-
ferences to estimate unknown parameters (i.e. δT , δνN and δνT ). In the
case of n reflection interface and m incidence angle, the seismic ampli-
tude difference is generated by

d = Gx, (6)

where

d =
[

W RPP(θ1,φ2)−W RPP(θ1,φ1)...
W RPP(θm,φ2)−W RPP(θm,φ1)

]
mn×1

,W =

[
w1 0 ... 0
w2 w1

... ...... ... ... 0
wn wn−1 ... w1

]
n×n

,

x =
[

RδT
RδνN
RδνT

]
3n×1

,G =
[

A(θ1) B(θ1) C(θ1)... ... ...
A(θm) B(θm) C(θm)

]
mn×3n

, (7)

and where w1, ...,wn are elements of wavelet extracted from input seis-
mic data.
We next propose an approach to constrain the inversion problem using
probabilistic constraints. Following a Bayesian framework, the posterior
Probability Distribution function (PDF) is given by (Buland and Omre,
2003)

P (x|d) ∝ P (d|x) P (x) , (8)
where P (x|d) is the posterior PDF, P (d|x) is the likelihood function, and
P (x) is the prior constraint PDF. Under the assumptions of Gaussian
random noise/error embedding in the input seismic data and the priori
constraint following the Cauchy distribution, we express the posterior
PDF as

P (x|d) ∝ Pexp [J(x)] , (9)
where

J(x) = (d−Gx)T (d−Gx)/2σ2
e +

3n∑
i=1

ln
(
1 + xi

2/σ2
x
)
. (10)

Differentiating J(x) with respect to x, and letting the resulting expression
be zero yields (

GTG +
2σ2

e

σ2
x + x2

i

)
x = GTd. (11)

The iterative re-weighted least squares(IRLS) algorithm is employed to
solve the inversion problem.

Numerical modeling
We first use a well log model to generate synthetic seismic amplitude dif-
ferences, and then we implement the inversion for the tangential fracture
weaknesses and tilted fracture weaknesses to verify the stability and ro-
bustness of the proposed approach. In Figure 1a, we show curves of
P- and S-wave velocities (VP and VS), density ρ, and fracture density e,
and in Figure 1b, we compute the tangential fracture weakness and tilted
fracture weaknesses given different values of tilt angle ν.

Numerical modeling
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Fig 1. A well log model.

Comparisons between true and inversion values of tangential fracture
weakness and tilted fracture weaknesses are plotted in Figure 2.
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Fig 2. Comparisons between true values and inversion results. (a) No
noise and (b) SNR=5.

We proceed to applying the proposed approach to a real data set to
further confirm its feasibility. The data have been sorted to common az-
imuth gathers, and they are also transformed from offset to the incidence
angle for each azimuth sector. In Figure 3, we plot stacked CDP seismic
profiles along azimuths φ1 and φ2 and the differences between stacked
seismic profiles. The ellipse in the figure indicates the location of the
fractured reservoir. Inversion results are plotted in Figure 4.
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Fig 3. Stacked CDP seismic profiles and the differences between
azimuthal stacked seismic data.
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Fig 4. Inversion results of tilted fracture weaknesses.

Conclusions
We derive a linearized reflection coefficient in terms of tilted fracture
weaknesses, and we propose an inversion approach to employ ampli-
tude differences to estimate tilted fracture weaknesses. Tests on syn-
thetic and real seismic data confirm the stability and reliability of the
proposed inversion approach.
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