
In order to recover the response of the fibre in this paper, we consider the
fact that the wave hits the fibre at any given point 𝟎 where is the
path of the fibre. At some point in space, the fibre-optic cable has a
tangent vector 𝐩 𝐩 , which we assume is normalized. The
amount of stretching at this point is given by the product of the strain
matrix with the tangent vector. Thus, we can determine the strain at this
point on by the following equation𝐩 𝐩
where the matrix is the strain at the point on the path of
the fibre which is a distance away from the source at the
origin.
Example
We will now show the results of the effect that different gauge lengths
have on the full-waveform response. We use the max P-wave and S-wave
velocity found in saturated shales as given in (Bourbiè et al., 1987). We
only consider the vector for the S-wave potential as it
produced the sharpest image for both straight and helical fibre
(Hardeman-Vooys et al.,2018). Over a distance of 100 m, we compare the
following gauge lengths: 5 m, 10 m, 20 m and 25 m.

Fig. 2 shows the response of the straight fibre in shale for four different
gauge lengths, where gauge length is a property of the DAS system related
to the pulse width of the laser interferometer. The image is the sharpest
for gauge length 5 m with the result for gauge length 10 m only slightly
less sharp; however, we see a spreading of the hyperbola for gauge length
20 m and 25 m.
Recall that the gauge length considers the results of a small portion of the
signal at a time, i.e. for our model: 5 m, 10 m, 20 m or 25 m. During that
portion, gauge length is contracted or stretched depending on the shape
of the signal. Since the response of the fibre is a hyperbolic, the larger
gauge lengths contain a larger portion of the hyperbola. So, it holds more
stretching and contracting information such that the two could cancel
each other out as seen in the spreading of the hyperbolas in the results for
gauge length 20 m and 25 m.
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Acquisition using DAS and Fibre Optic Cables
In seismic acquisition, a fibre optic cable is installed in a specific 
configuration. In this project, we consider a fibre optic cable buried 
horizontally 10 meters beneath the earth's surface over a distance of 100 
m. A source is positioned in the centre of the fibre at the Earth's surface. 
Once the source detonates, it sends waves into the ground. When these 
waves hit the fibre, they stretch and strain the fibre optic cable. The strain 
on the fibre is recovered by an interrogator attached to the cable using a 
laser pulse that interacts with imperfections in the cable.

Fig. 1 depicts the description of DAS acquisition. A source is represented 
by a red ‘x'. The blue line represents the fibre 10 m deep. The green half-
sphere describes the wave moving away from the source. The receiver is 
the point where the wave hits the fibre for that portion of the wave. We 
see that the wave hits two points on the fibre for this portion of the wave. 
As the wave made by the source moves further from the origin, the wave 
hits more of the fibre until the fibre ends or the wave dissipates.
In the case of constant velocity, seismic waves move through the earth's 
subsurface in a spherical shape. In fact, an exercise in calculus shows that 
the Laplace operator can be considered in terms of radial solutions. In this 
report, we utilize the solution of the acoustic wave equation written in 
terms of the P-wave and S-wave components 

which can be derived from the wave equation using the Helmholtz 
Decomposition Theorem (Aki and Richards, 2002). 
In this experiment, the strain is the measure of how much the wave moves 
the fibre. The equation for strain is defined as follows 

    
The strain is a symmetric matrix with three eigenvectors and three 
eigenvalues which describe how much the material moves in each of three 
orthogonal directions.

Fig. 3 (left) gives a physical representation of what we described in the
previous paragraph. The gauge length 5 m only contains an increasing
portion of the signal around the origin. The gauge length 10 m contains
some decreasing signal but mostly increasing signal around the origin. Both
gauge length 20 m and 25 m contain a lot of increasing and decreasing
portions of the signal enough to cancel out the response at the origin
which we see occurs in Fig. 3 (right) for larger intervals around the origin as
the gauge length increases. Fig. 3 (right) only describes what occurs for the
first time step ଵ of the full-waveform response of the straight fibre. It
provides a good visual explanation for the spreading which occurs for the
larger gauge lengths in the bottom two images of Fig. 2.
Future Work
This report contains an elementary study of an analytic model for DAS
acquired seismic data. In the future, it would be beneficial to extend the
analytic model to work for a varying velocity as opposed to a constant
velocity. We would also explore the response given a moving source
instead of a stationary source. This investigation would help model seismic
experiments involving ambient noise caused by vehicles or trains among
other experiments. Also, we plan to study why the amplitude for the helical
fibre's response is weaker than the straight fibre's response despite
showing strain in more dimensions.
Conclusions
We began with an explanation of the model. We studied the effects that
different gauge lengths had on the full-waveform response for straight
fibre. The larger gauge lengths produced a spreading in the response which
was not found in the smaller gauge lengths. We noted that this is largely
due to the amount of the signal contained in the larger gauge lengths
which resulted in some cancellations.
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Figure 2: The full-wave response of the straight fibre in saturated shale when A = 
[0,0,1] for (top left) Gauge length 5 m, (top right) Gauge length 10 m, (bottom left) 
Gauge length 20 m, and (bottom right) Gauge length 25 m.

Figure 1: Physical model of the experiment. 

Figure 3: (Left) Comparison of the gauge lengths with respect to the full-waveform 
signal at ଵ of the straight fibre: (Blue) Original signal at ଵ (Red) Gauge length 5m, 
(Yellow) Gauge length 10m, (Purple) Gauge length 20m, and (Green) Gauge length 
25m. (Right) Comparison of the gauge lengths applied to the full-waveform signal 
at ଵ of the straight fibre: (Blue) Gauge length 5m, (Red) Gauge length 10m, (Yellow) 
Gauge length 20m, and (Purple) Gauge length 25m.


