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Least squares formulation: modeling vs migration
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L:  modeling 
operator
d:  acquired data
m:  model

=d Lm

2J = −d Lm

Born modelling

d m

LKirchhoff
data model

One number!

LRTM

Kirchhoff modelling
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Model 94: LSRTM (5 iterations)
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Kirchhoff : Model 94 - migration
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LS Kirchhoff: Model 94 - 9 iterations
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(all filters turned off)

RTM (50 shots)

LSRTM (9 iterations)

Kirchhoff Migration Marmousi

(b)

(d)Data space (residuals)

Mask (Wd)

(a)

(c)

Hessian inversion vs illumination compensationLeast squares formulation: modeling vs migration
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Least Squares inversion

WmLmd λ+−= 2J
LH :adjoint operator 
(~migration).

Data residuals
in a particular 
norm choice

W: weights to enforce 
a particular solution

Undesired features = prediction error + size of model 

1( ) H−= Hm L L L d

Solution: migration + Hessian inverse

Model size
in a particular 
norm choice

Iteratively solve…

mLWWd md=
Wd data space weights
Wm model space weights

Nx x Nz

Nxx Nz

m10

m10m5

Cross-talk (mi with mj)

Hessian= LHL 

Migration

LSMIG is defined by the choice of 
the modelling operator. 

Optimization seeks to reduce the 
error energy by applying changes to 
the reflectivity.  If the operator 
cannot predict the data completely 
then some components of the 
residuals cannot be decreased. 

The error energy (J) is a global 
measure, not sufficient to control 
the optimization outcome. 

Data weights, model weights and 
constraints are used to enforce the 
outcome to be a useful result. 

The solution to the normal 
equations implies first a migration 
and then the deconvolution of the 
Hessian. 

Sampling and aperture issues are in 
the Hessian’s off-diagonal 

The Hessian diagonal can be 
approximated by the sum of cross-
correlations for all sources. This 
compensates for different shot illumination 
but not sampling or aperture. This is 
commonly done in industry.
Without the summation, this is equivalent 
to a deconvolution imaging condition, 
which compensates for different energy 
across shots, but not shot different 
density. 
However, the Hessian deconvolution on 
the right is required to achieve proper 
focusing. 

LEAST SQUARES MIGRATION FORMULATION

RTM RTM with illumination
compensation

LSRTM

ADAPTIVE DATA SIMPLIFICATION
LSMIG  Kirchhoff for a complex model shows 
the problems for optimization because of 
modelling limitations for real data. Traveltime 
tables cannot match the complexity of the FD 
data. Complex events persist in residuals 
calculated at different iterations producing 
wrong model updates.  

One way to control these wrong events is 
tracking the residual evolution during iterations 
and attenuate events that cannot be properly 
predicted.

LSMIG GOALS: a) focusing, b) sampling artifacts, c) illumination compensation
LSRTM examples

RTM LSRTM 

LSRTM 

LSMIG KIRCHHOFF
migration LSMIG 

Focusing examples

Sampling artifact examples

Velocity 

a) Kirchhoff migration; b) LSKirchhoff without data weights;
c) Residuals with the data mask; d) Kirchhoff LSMIG with data mask.  

Very sparse acquisition

Kirchhoff examples with data simplification

RTM 


