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LEAST SQUARES MIGRATION FORMULATION L SMIG is defined by the choice of LSMIG GOALS: a) focusing, b) sampling artifacts, c) illumination compensation
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compensates for different shot illumination
but not sampling or aperture. This is
commonly done in industry.

Without the summation, this is equivalent
to a deconvolution imaging condition,
which compensates for different energy
across shots, but not shot different

Focusing examples
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However, the Hessian deconvolution on compensation

the right Is required to achieve proper Kirchhoff examples with data simplification
focusing. 2 , — F | -
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ADAPTIVE DATA SIMPLIFICATION ' 7
LSMIG Kirchhoff for a complex model shows
the problems for optimization because of
modelling limitations for real data. Traveltime
tables cannot match the complexity of the FD
data. Complex events persist in residuals
calculated at different iterations producing
wrong model updates.

One way to control these wrong events is = » —— / o
tracking the residual evolution during iterations | =

and attenuate events that cannot be properly a) Kirchhoff migration; b) LSKirchhoff without data weights;
predicted c) Residuals with the data mask; d) Kirchhoff LSMIG with data mask.
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