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Abstract
In this study, we propose a first-order qSV-wave propagator in general
2D vertical transversely isotropic (VTI) media, which can be easily em-
ployed with staggered-grid finite difference scheme. By further correc-
tion of projection deviation of simulated wavefield components, residual
qP-waves will be completely eliminated and separated scalar pseudo-
pure-qSV-mode waves can be obtained. We have performed the al-
gorithm to several VTI models, the synthetic results demonstrate the
validity and feasibility of this algorithm. In addition, the more efficient
first-order Hybrid-PML can be directly implemented in this algorithm with
good performance.

Theory and Method
First, we project the original elastic wavefields onto isotropic references
through the introduction of a similarity transformation to Christoffel ma-
trix. In this way, equivalent Christoffel equation of qSV-waves is derived
and through inverse Fourier transform, second-order pseudo-pure-qSV-
mode wave equations can be obtained (Cheng and Kang, 2016). Sec-
ond, we introduce velocity fields vx and vz as intermediate variables and
keeps the same relationship between displacement fields and velocity
fields as they are in original elastic wave equations. Then, we further
introduce variables: σxx, σzz, σxz, σzx and obtain the first-order qSV-wave
equations (Liu, et al., 2018):
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By applying spatial domain deviated operators designed by Cheng and
Kang (2016), pure scalar qSV-waves will be obtained.

Synthetic Examples
For comparison, in this study we performed the numerical simulation
of qSV-wave propagation by both elastic wave equations and first-order
pseudo-pure-qSV-mode wave equations proposed in this study.
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Fig. 1: Synthetic wavefields in a VTI medium with weak anisotropy: a) x- and b) z-
component simulated by original elastic wave equations; c) x- and d) z-component
simulated by first-order pseudo-pure-mode qSV-wave equations; e) pseudo-pure-mode
scalar qSV-wave field; f) separated scalar qSV-wave field.

Synthetic Examples
In the first case, we apply the algorithm to a homogeneous VTI medium
with weak anisotropy, whose vp0 = 3000m/s, vs0 = 1500m/s, ε = 0.1
and δ = 0.05, a force source is loaded at vx grid point right in the middle
of the model. In the second case, we apply the new algorithm to a VTI
medium with strong anisotropy, whose elastic parameters: C11 is 23.87
GPa, C33 is 15.33 GPa, C13 is 9.79 GPa, C44 is 2.77 GPa and density
is 2500kg/m3.
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Fig. 2: Synthetic wavefields in a VTI medium with strong anisotropy: a) x- and b) z-
component simulated by original elastic wave equations; c) x- and d) z-component
simulated by first-order pseudo-pure-mode qSV-wave equations; e) pseudo-pure-mode
scalar qSV-wave field; f) separated scalar qSV-wave field.

The snapshots of synthetic qSV-wavefields at different time with Hybrid-
PML (Liu, et al., 2017) applied are shown in Figure 3.
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Fig. 3: Snapshots of x-component simulated by first-order pseudo-pure-mode qSV-
wave equations in a VTI medium with strong anisotropy: a) 320 ms, b) 400 ms and c)
480 ms, respectively.

In this section, the new algorithm is applied to a heterogeneous layered
VTI model, in which the first and the second layer are the same VTI
medium with strong and weak anisotropy, respectively.
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Fig. 4: Synthetic wavefields in a layered VTI model with strong anisotropy in the first
layer and weak anisotropy in the second layer: a) x- and b) z-component simulated
by original elastic wave equations; c) x- and d) z-component simulated by first-order
pseudo-pure-mode qSV-wave equations; e) pseudo-pure-mode scalar qSV-wave field;
f) separated scalar qSV-wave field.

It’s demonstrated that with further polarization-based correction, not only
is qP-wave energy eliminated, but also the converted P-wave energy.

Synthetic Examples
In the final example, we apply the new algorithm to part of the SEG/Hess
VTI model. For a heterogeneous model, all spatial domain deviation op-
erators for each medium need to be calculated with their elastic parame-
ters. As shown in Figure 5 are the synthetic qSV-wavefields, from which
we can observe that after the summation of x- and z- components,
qP-mode wave energy has already been extremely suppressed. With
further correction, separated scalar qSV-mode waves are obtained .
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Fig. 5: Synthetic wavefields in SEG/Hess VTI model: a) x- and b) z-component sim-
ulated by first-order pseudo-pure-mode qSV-wave equations; c) pseudo-pure-mode
scalar qSV-wave field; d)separated scalar qSV-wave field.

Conclusions
I In this study, we have proposed a first-order qSV-wave propagator in

general 2D VTI media.
I We have presented synthetic examples of qSV-waves in homoge-

neous anisotropic VTI medium with weak/strong anisotropy, layered
VTI model and part of SEG/Hess VTI model with further projecting
the synthetic wavefields onto local anisotropic references to remove
residual qP-wave energy.

I The snapshots of x-component at different time demonstrated that
Hybrid-PML can be efficiently implemented in this algorithm.
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