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Abstract

Machine learning has been a booming subject in

computer science and its applications have been made

in various subjects including geophysics. Convolutional

Neural Networks (CNNs) have great potential for

solving image processing problems like denoising and

interpolation. Deblending, considered as an under-

determined denoising problem, falls into this category.

In this report, we use CNN to replace the deblending

operator and its performance is analyzed. We use a 4-

layer U-Net to perform deblending on synthetically

blended shots from a wedge velocity model with point

scatterers. We test out different hyper-parameters and

the trained model could successfully remove the noise

and preserve diffractions from the scatterers with some

tolerance. The generality of the model is evaluated by

testing the model on an easier 2-layer velocity model.

The model can successfully identify and recover most

part of the primaries but fails to deal with some

interferences and leaves them muted.

Theory

The neural network architecture to solve the problem is

the U-Net (Ronneberger et al., 2015). The U-Net was

designed based on the CNNs and bridge connections

were added so that it performs fast and well especially

for solving segmentation problems.

We use 𝐿2 square or MSE for the loss function, which is

defined as
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Synthetic Data Examples

Conclusion

We trained a U-Net model to perform deblending. We

tried several optimization and network parameters and

found the best combination. In the case where the

training and test data come from the same velocity

model, the network performs well by preserving small

diffractions and correctly identifying primaries. It

performs a bit worse for the shots at the edge of the

model because of the lack of training pictures

representative of this case. For the case where the test

data comes from a different model than the training

data, the network performs okay but not as well as the

first case. In this case, the test model was simpler than

the training model, so the test is not conclusive and

more work is required to fully understand how to

generalize the network to new problems. To address

these issues we plan to investigate in generalizing the

model by gradient boosting, and provide several models

for training.

FIG. 3. The cross comparison of 𝐿𝑣𝑎𝑙 with varying initial filters. 
The blue, orange and green lines refers to the cases with 8, 16 

and 32 filters, respectively. Red crosses stand for the least 
𝐿𝑣𝑎𝑙 on each line.

FIG. 4. The prediction on the whole dataset containing both 
the training and validation set (transposed to the shot 

domain). Note the preservations of the diffractions.
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FIG. 5. Predictions for blended data from a two-layer model.FIG. 2. The inputs fed to the U-Net model. The plots show the 
corresponding input (above) and label (bellow) pair at the 

120th receiver, with 512 receiver slices in total.

FIG. 1. Diagram of U-Net model modified from Ronneberger
et al. (2015). The gray arrows refer to the bridge connections 
that directly pass the features from down-going layers to up-

going layers.


