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ABSTRACT 

An industrial laminate is shown to possess elastic anisotropy. The material, 
Phenolic CE, is composed of thin layers of canvas fabric bonded with a phenolic resin. 
Ultrasonic physical modeling has been conducted using the phenolic. Different 
compressional-wave velocities and distinct patterns of shear-wave splitting are observed on 
each face of a cube of the material, as well on edges of the cube beveled at 45” to the 
adjacent faces. Analysis of the results demonstrate that the phenolic laminate is suitable for 
modeling media with anisotropy of orthorhombic symmetry. 

INTRODUCTION 

Shear-wave splitting and anisotropy are being studied as part of the ongoing effort 
to enhance seismic data interpretation and reservoir exploitation. Multicomponent surface 
seismic, VSP, crosswell and full waveform sonic data are being used to determine the 
relationship between shear mode polarization and fracture patterns (Crampin, 198 1, 1984, 
1985; Yale and Sprunt, 1989). Banik (1984) reported errors in depth estimates of between 
150 - 300 m in areas of the North Sea basin due to anisotropy within some shaly units. 
Both compressional and shear wave anisotropy impact on velocity analysis for 
multicomponent imaging and methods of estimating stress based on the Vs/Vp ratio 
(Thomsen, 1986, 1988). To address these issues, a clearer understanding of elastic wave 
propagation in anisotropic media is required. 

Numerical and physical modeling can be used to study shear-wave splitting and 
anisotropy. Numerical techniques are useful for estimating the response of specific cases 
for an approximated or well understood system. Physical modeling is useful for studying 
complex or poorly understood systems, such as anisotropic media. This paper describes 
the results of experiments to determine the anisotropic elastic properties of an industrial 
laminate, Phenolic CE. Velocity measurments and observations of shear-wave splitting at 
various directions through a cube of the phenolic are interpreted in terms of orthorhombic 
anisotropy. 

PHYSICAL MODEL EXPERIMENTS 

Physical modeling generates data that are being used to test multicomponent 
processing and numerical modeling techniques under development as part of the 
Consortium for Research in Elastic Wave Exploration Seismology (CREWES) project at 
the University of Calgary. Ultrasonic modeling using phenolic laminate is ideally suited to 
study velocity anisotropy because the ambiguities inherent in field data are absent. The 
initial effort has been to determine the anisotropic behaviour of phenolic for compressional 
and shear waves. 

Piezoelectric P-wave and S-wave transducers are being used as the acoustic source 
and receivers for multicomponent physical modeling. Both are flat-faced cylindrical contact 
transducers with an active element 1.26 cm in diameter. The compressional or P-wave 
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transducer (Panametrics V103) is vertically polarized, with the maximum sensitivity normal 
to the contact face. The shear-wave transducer (Panametrics V153) is horizontally 
polarized, with the maximum sensitivity parallel to a line across the contact face. To record 
the SV or radial component, the shear receiver transducer is used with the polarization 
parallel to the spread direction, while for the SH or transverse component, the receiver is 
rotated with the polarization perpendicular to the azimuth of the profile plane. 

The source transducer is driven with a 28-volt square wave tuned to produce a 
broadband wavelet with a centre frequency at 600 kHz. Amplified data are sampled and 
stored using a Nicolet digital recording oscilloscope, connected to a Perkin-Elmer 3220 
seismic processing system through an IBM-XT which controls the experiments. Traces of 
up to 4096 samples are recorded sequentially and stored on tape or disc in standard SEG-Y 
format. 

The CE grade phenolic laminate is composed of layers of a woven canvas fabric 
saturated and bonded with a phenolic resin, and has a density of 1360 kg/m3. Other grades 
of laminate which incorporate thin paper layers, fibre glass cloth or linen are also available. 
Initial tests with the phenolic used in this study showed that there was a directional 
dependancy on the velocity for both P and S waves, suggesting it was suitable for a 
modeling study of an anisotropic medium. Shear-wave splitting was observed during 
transmission tests when the sample was rotated between shear transducers with parallel 
polarization. The polarizations of the split shear waves also appeared to be parallel to the 
orientations of the approximately orthogonal weave of fibres in the canvas fabric. For this 
reason, subsequent experiments were conducted on pieces of phenolic that were cut with 
faces parallel or orthogonal to the observed fibre directions and to the plane of the canvas 
layers. 

SHEAR-WAVE SPLITTING 

Shear-wave splitting experiments were conducted using a 10 cm. cube of phenolic. 
A sample of the CE grade phenolic with the faces labeled with the convention used in this 
study is shown in Figure 1. The machined surface of the laminate sheet, parallel to the 
fabric layers, was designated Face 1, while the sides of the cube, parallel to the fibre 
directions, were designated Faces 2 and 3. The apparatus used for studying split shear 
waves is shown in Figure 2. The cube of material is placed between two fixed shear wave 
transducers which are aligned with parallel polarizations. The cube can rotate between the 
transducers, and a pointer on the cube is used to determine the azimuth of the sample with 
respect to a fixed circular protractor. 

Figures 3,4 and 5 show the records form Faces 1,2 and 3 of the cube respectively. 
Each trace records the signal transmitted through the cube at 5” intervals of rotation with 
respect to the polarization direction of the shear-wave transducers. The sample rate used in 
this study was 50 nanoseconds, and the arrival times are shown in microseconds. The 
arrival times and hence the velocities of the two shear components do not vary with azimuth 
on a particular face. The faster shear arrival is designated S1 and the slower mode as S2. 
While it is stictly correct to refer to the split shear waves and the P waves under most 
conditions as quasishear and quasicompressional modes, that prefix will be implied rather 
than included. On all records, the weakly coupled P-wave arrival is barely visible. The 
compressional velocities were determined separately using the P-wave transducers. 

The orthogonal relationship between the fast and slow shear modes is clearly 
observed as the 90” separation of the amplitude maxima of the split shear arrivals. An 
example of a plot of amplitude vs. azimuth for a record from Face 2 is shown in Figure 6. 
Figure 3, plotted in true relative amplitude, and Figure 6 both show that the S1 mode 
generally has a greater amplitude than the S2 arrival, indicating that the attenuation is also 
dependent on the polarization of particle motion. The amplitude ratios of the fast to slow 















shear arrivals, measured at their maxima, have varied from 1.1/l .O to 1.4/1.0 for the 
samples tested. 

The P, Sl and S2 velocities measured on each face are summarized in Figure 7. For 
the following discussion, the velocities will be labelled with 2 subscripts indicating the 
directions of propagation and particle motion with respect to the three faces of the cube. For 
example, V12 indicates wavefield propagation through Face 1 with particle motion towards 
Face 2. Slow, medium and fast directions through the cube may be defined on the basis of 
the measured compressional velocities, ie. V11 = 2927 m/s, V22 = 3376 m/s and V33 = 
3575 m/s respectively. Of the six shear wave velocities measured there are only three 
independent values, which depend on the direction of propagation and particle motion. The 
shear wave velocities may be paired as follows; 

1) propagation in the medium direction and particle motion in the slow direction, or vice 
versa (V21 = 1504 m/s, V12 = 1520 m/s), 

2) propagation in the fast direction and particle motion in the slow direction, or vice versa 
(V31= 1597 m/s, v13 = 1608 m/s), 

3) propagation in the medium direction and particle motion in the fast direction, or vice 
versa (V23 = 1656 m/s, V32 = 1663 m/s). 

Transmission experiments were also performed between opposing edges of the 
cube after they were beveled at 45” to the adjacent faces. The measured P, S1 and S2 
velocities are summarized on Figure 8. Transmission in the 2-3 plane perpendicular to the 
axis through Face 1 will be designated as the 4 direction, with V44 referring to the P-wave, 
V44 referring to the SV mode in the 2-3 plane and V41 referring to the SH mode with 
particle motion towards Face 1. Similarly, the 5 direction is in the l-3 plane perpendicular 
to the axis through Face 2 and the 6 direction is in the l-2 plane perpendicular to the axis 
through Face 3. 

The measured velocities for a particular sample of phenolic are repeatable to within 
+/- 15 m/s (-0.5%) for P-waves and +/- 4 m/s (-0.25%) for shear waves, corresponding 
to +/- 3 time points at the sample rate that was used. Variations between different samples 
were approximately twice that again. Based on visual inspection, there is some spatial 
variation in the fibre density within a sheet that may cause the velocity differences 
observed. The velocity values are based on transit time measurements of the start of the 
wavelet, with a small delay time related to the transducer response subtracted. 

ORTHORHOMBIC ANISOTROPY 

The results of the transmission experiments with the phenolic indicate that the 
orthorhombic symmetry system is appropriate to describe the anisotropy of this material. 
Following the indicial notation used by Thomsen (1986), stress CT and strain E are related 
bY 
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oij = x z Cijkl&kl , i, j, = 1, 23 3 1) 

k =l l=l 

For the case of orthorhombic svmmetrv, the 3x3~3~3 stiffness tensor cijM may be reduced 
to a 6x6 matrix 

I 
cllc12c13 

c22c23 
c33 

cm= C44 
c55 

C66 

(2) 

of nine independent coefficients, with Cl2 = C21, Cl3 = C31, and c23 = c32 (Nye, 1957; 
Fedrov, 1968; Musgrave, 1970). Using the elastic equation of motion Brown, 1989; in 
this volume) acoustic velocities may be defined in terms of the stiffnesses cmn and the 
density p as follows; Along the principal axes, 

Vll = Gim~ (3) 

v22 = @z7PJ, (4) 

v33 = qG@L (5) 

v23 = v32fm~ (6) 

v13 = v31~.css/p~7 (7) 

VI2 = v21~(c66/pL (8) 

For a raypath in the 2-3 plane at 45” to those principal axes and perpendicular to the axis 
through Face 1, 
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vu = d ((C22 + C33 + k44)+[(C33 - C22)2 + qC23 +c44)211’2J/4p 

v44= d (C22 + C33 + 2C44)-[(C33 X22)2 + 4(C23 + C44)2]1'2)/4p 

v41= QCS5 + C66 J7p-J 

(9) 

(10) 

(11) 

Similarly, for a raypath in the l-3 plane at 45” to those axes and perpendicular to the axis 
through Face 2, 

v55 = d (Cl1 + C33 + k55)+[(Cll- C33>2 + 4(C13 + C66)2]1'2hp 

((Cl, + C33 + 2C55)-[(Cl1 X33)2 + 4(C13 + c66)211’2)/4P 

v52 = fl2(c44 +C66 )/2pj 

(12) 

(13) 

(14) 

and for a raypath in the l-2 plane at 45” to those axes and perpendicular to the axis through 
Face 3, 

v66 = ?I ((Cl1 +C22 + k66)+[(C22-C11)2 + 4(C12 + C66)21"2)/4P (15) 
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((Cl1 + c22 + 2c66kkc22 - Cd + 4(c12 + c66)21”2 14~ 

v63 = ac44 + c55 )/2pl 

(16) 

(17) 

Nine independent velocity values are required to completely define the stiffnesss 
matrix for the case of orthorhombic anisotropy. These include the three P wave velocities 
along the principal axes, three shear wave velocities, one of each pair, also along the 
principal axes, and three P wave or SV wave velocities, each perpendicular to one and at 
45” to the other two principal axes. In principal, measurements at other orientations could 
be used but require considerably more complex solutions. 

Using the relationships outlined above, the measured velocities can be used to 
calculate the stiffness coefficients and to determine how well the data from the Phenolic CE 
corresponds to the model of orthorhombic anisotropy. Firstly, it is required that 
Vt2 = V21, Vr3 = V31 and V23 = V32 . From Figure 6, this can be seen to be the case, 
with differences of 1% or less. The stiffness coefficients determined from the shear 
velocities along the principal axes, ie. ~44, ~55 and ~66 can be used to calculate the SH 
mode velocities along the 45” raypaths using Equations 11, 14 and 17. The stiffness 
coefficients off the diagonal of the matrix, ie. c12, cl3 and c23, can be computed using 
either the P-wave or the SV-wave velocities from the 45” raypaths. For example, either 
Vu or V~;I can be used in the computation of a value for ~23. Separate stiffnesses were 

computed using the measured P-wave and SV-wave velocities, and then the average of the 
two coefficients was used to compute the corresponding model velocities. The results are 
summarized in Table 1. 

The measured velocities fit the orthorhombic symmetry model very well, with the 
largest deviations noted for the SV modes in the 5 and 6 directions. No explanation has 
been determined for the consistency of the negative bias in the differences between the 
measured and model velocities. However, the results indicate that the phenolic is suitable 
for physical modeling of orthorhombic anisotropy. 

DISCUSSION 

The source of the anisotropy in the phenolic laminate appears to be related to the 
layering and weave of the canvas fabric, with different fibre densities in the directions of 
the three principal axes. Thin sections cut parallel to the three faces of the phenolic cube are 
shown in Figure 9. The causes of anisotropy in natural rocks include thin layer lamination 
(Helbig, 1983) and preferred orientation of mineral grains, pores or fractures (Crampin, 
1985). Anisotropy has been recognized in many rocks (Thomsen, 1986; Banik, 1984), but 
the physical cause and symmetry systems of specific cases of anisotropic media are seldom 
unambiguously identified. Transverse isotropy can be invoked for thin bed layering or 
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Table 1. The stiffness coefficient matrix and the comparison of the measured vs. computed 
velocities. 

~11 = 11.65157 x lo9 N/m* 
c** = 15.50043 ” 

c33 = 17.38165 ” 

cu = 3.747616 ” 

~55 = 3.494668 ” 

~66 = 3.109156 ” 

~23 = 7.259130 (average from Vu and V 6) 

(6.968318 from VM, 7.549941 from V,$ 

cl3 = 6.475514 (average from V55 and V +J 

(5.938791 from V55, 7.012237 from V5:) 

~12 = 6.299762 (average from V66 and V 6;) 

(5.87 1894 from V66, 6.72763 1 from V6;) 

Computed velocity 

~44 = 3389 m/s, 

vii= 1833 m/s 

v 41= 1558 m/s 

v 55 = 3230 m/s 

V 53 = 1676 m/s 

V 52 = 1588 m/s 

v 66 = 3109 m/s 

v66 = 1613 m/s 

v63 = 1632 m/s 

Measured velocity 

v44 = 3373 n-J/s 

Vii= 1804m/s 

v 41= 1550 m/s 

v 55 = 3201 m/s 

v 53 = 1618 m/s 

v 52 = 1574 llY/S 

v 66 = 3084 m/s 

v67i = 1565 m/s 

v63 = 1631 m/s 

Error 

-0.5% 

-1.6% 

-0.5% 

-0.9% 

-3.5% 

-0.9% 

-0.8% 

-3.0% 

0% 
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shaly sequences, while azimuthal anisotropy is used to describe the idealized case of 
vertical aligned fractures. Both of these examples would be degenerate cases of the more 
general orthorhombic system. Two or more sources of anisotropy superimposed within the 
same lithologic unit, such as aligned vertical fracturing of a laminated sequence could result 
in orthorhombic anisotropy. 

The conventional measure of anisotropy given by 

& = [Vp(90”)- vp(oo)] / Vp(0”) , 

is not directly relevant to the case of multiple symetry axes. As Thomsen (1986, 1988) 
pointed out, this measure, at least in the cases of transverse isotropy and azimuthal 
anisotropy, is not always useful for either the computation of moveout velocities or the 
interpretation of Vs/Vp ratios for stress analysis. The term 

s=~vp(45°)/vp(00)- l]-[vp(9o”)/vp(o”)- l] 

was defined by Thomsen (1986) and used for moveout and stress analysis. Applying these 
measures to the velocity ratios measured in the directions used for this study produces 
values that fall within the range of the values reported by Thomsen (1986) for a variety of 
rocks. It is not yet clear if the moveout patterns observed on surface seismic gathers 
recorded with the phenolic can be conveniently modeled in the same manner described by 
Thomsen. 

CONCLUSIONS 

Ultrasonic modeling with Phenolic CE laminate has demonstrated the anisotropic 
elastic properties of the material. The patterns of shear-wave splitting observed on each 
face of a cube of the phenolic, along with the measured compressional velocities, were 
used to define orthogonal principal axes related to the slow, medium and fast directions 
through the material. Shear and compressional velocities were also measured in directions 
45’ to two of the principal axes and perpendicular to the other axis. Analysis of the data 
supports the interpretation of the anisotropy to be of orthorhombic symetry. 

Physical modeling with the phenolic is currently being used to record shot gathers 
and simulated VSP and crosswell experiments to assess the effects of a known anisotropy 
for these geometries, and to provide comparative data for the testing of numerical modeling 
schemes. The initial application of conventional NMO-based velocity analysis on surface 
shot gathers produced stacking velocities that differed considerably from expected values 
in some instances. Surface seismic data will record the combined effects of all the 
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anisotropic layers through which the wavefield may have passed. Clearly, moveout 
velocity analysis and imaging for media with orthorhombic anisotropy represents a major 
challenge for multicomponent seismology. 
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