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Finite-difference solution of the eikonal equation for
transversely isotropic media

David W.S. Eaton

ABSTRACT

A new finite-difference technique is presented for solving the eikonal equation
for inhomogeneous, transversely isotropic media. The method is an extension of
other recently developed, isotropic finite-difference algorithms. An expanding-
wavefront scheme on a triangular mesh of points is employed, in order to ensure
causality and minimize grid anisotropy. Several examples are presented to illustrate
the method for varying degrees of anisotropy and inhomogeneity. This technique is
particularly well suited to tomographic and migration/inversion applications, since
the traveltimes can be efficiently calculated on a dense grid of points for a smoothly
varying background.

INTRODUCTION

The calculation of seismic traveltimes is a fundamental problem in exploration
seismology, with applications in forward modeling, tomography, migration and
inversion. For inhomogeneous and/or anisotropic media, the calculation of
traveltimes is difficult and often time consuming. This study presents a new
algorithm that employs a finite difference approach to calculate the traveltime
function, T, for gP and ¢S waves in inhomogeneous, transversely isotropic media.

In the high-frequency approximation, the traveltime function is governed by the
eikonal equation (Bleistein, 1986). The traditional approach to solving for T involves
some form of iterative ray tracing. Mathematically, this approach corresponds to
solution of the eikonal equation by the method of characteristics (see Musgrave,
1970; Bleistein, 1986). For applications that require traveltimes on a grid of points,
interpolation of the ray-traced traveltimes is essential. Because of its iterative nature,
ray tracing through complex models can be expensive and cumbersome.

Solution of the eikonal equation using finite differences was proposed recently
by Vidale (1988). Here the wavefronts, rather than traditional rays, are tracked. A
major advantage of this method is that the data are directly calculated onto a grid
of points; no subsequent interpolation is required. However, the traveltime function
is constrained to be single-valued; thus this technique is well suited to modeling
first-arrival traveltimes. Vidale (1988) demonstrated that this method correctly treats
head waves, and shadow zones are filled with the appropriate diffractions. Qin et al.
(1990) have modified Vidale’s algorithm by employing an expanding wavefront
technique in order to honour the principle of causality.

Here, the method of Qin et al. (1990) is modified further using a triangular
mesh of points (Figure 1) similar to grids employed to model fluid flow using
cellular automata (eg. Rothman, 1988). This modification lends additional symmetry
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FIG. 1. Triangular grid used for (finite-difference algorithm. Each point is
surrounded by six nearest neighbours in a hexagonal configuration.

to the finite-difference operator, reduces grid anisotropy, and facilitates the extension
of the technique to include anisotropic (in this case, transversely isotropic) media.

In an exploration context, the principle causes of transverse isotropy are paraliel
alignment of elongated mineral grains in clays and shales, periodic thin layering and
preferred alignment of cracks (Crampin et al., 1984). Incorporation of anisotropy
into the modeling procedure leads to complications, such as cusps and triplications
in the wave surface, that stem from the difference in magnitude and direction
between the group and phase velocities. Preliminary results appear to indicate that
the method considered here is suitable only for modeling weak anisotropy. However,
measurements made for sedimentary rocks indicate that strong anisotropy is
uncommon (Thomsen, 1986).

BACKGROUND THEORY

The eikonal equation in two dimensions (corresponding to the scalar wave
equation) can be written

0T \ 0T \2
(a—i) +(a—:) = px)? (1)

where p is slowness and the traveltime function, T, is constant along a wavefront
surface. Equation (1) is then simply an expression for the magnitude of the slowness
vector, p = V1. The components of p need not be measured in the x- and z-
directions, but must be mutually orthogonal. Referring to Figure 2, a second-order
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FIG. 2. Basic cell of 4 points for finite difference calculation.

finite-difference approximation to (1) at the centroid of four points (comprising a
cell) may be written

(’ca;l'rc )z+(TB‘;TD)2=p2 ' (2)

If the traveltimes for three out of four points are known, the fourth traveltime (eg.
T,) can be solved for using the quadratic formula,

Ta =Tc + \[thz - (RIR)(ta-1e)? . (3)

Equation (3) is the fjlmc as previous isotropic finite-difference formulae for a square
grid when h = k£ = V2Ax, where Ax is the grid interval.

The differential equation governing T in anisotropic elastic media is somewhat
more complex, and has the form (see Appendix)

detl't,,-‘t,lcw - paﬂ,l = 0 y (4)

where Einstein’s summation notation is employed, a comma implies spatial
differentiation, 8, is the Kronecker delta and ¢,y is the tensor of elastic stiffnesses.
Multiplying (4) by the phase velocity squared (v¥) pives the Kelvin-Christoffel
equation

det|T, - pv?8,| =0 , (5)

where I', = nncy, and n; is the unit vector normal to the wavefront. Thus, if the
direction of propagation and the type of wave (eg. gP, ¢S1, ¢S2) is known, the
magnitude of the slowness vector (ie. 1A% can be computed using (5). A finite-
difference algorithm similar to previous isotropic algorithms can then be
implemented by estimating a direction for the wavefront normal, solving for the
magnitude of the phase slowness, and then updating the traveltime using (3). This
approach avoids the finite-difference approximation to equation (4) and the necessity
to solve a sixth-order polynomial equation.
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For transversely isotropic media, analytic solutions to (5) exist in several forms.
Using the parameterization suggested by Thomsen (1986), the phase velocities may
be written

() = 0| 1 + esin®d + D'®@)]" ©6)
v5u(®) = Bol[1 + (a/Boesin®d - (a/BrD'®)]" )
ven® = Bo| 1 + 2sin0 " ®)
with
D'(®) = (12)E{ [1 + 46 /E)sin®Beos™® + 4E+e)e/E)sin®]™ - 1} )
and
£=1- B/ . (10

Here 0 is the angle that the wavefront normal subtends with the axis of symmetry,
o, and [, are the gP- and ¢S-wave velocities in the direction of the symmetry axis,
and €, & and Y are anisotropy parameters that vanish for isotropic media. These
parameters can be defined in terms of elastic stiffnesses as follows (Thomsen,
1986):

a = VC,,/p , (11)
Bo = VCuu/p (12)
e = (C,-G/2Gy) , (13)
Y = (CeCW/Q2C,) (14)
and
5 = (Cy + C) - (C; - Cu) . (15)
2CH(Cyy - Cu)
The parameter 6" is defined
8 =@25-ek . (16)

Using these formulas for phase velocity, an algorithm is described below for solving
for the traveltime, 7, in transversely isotropic media.

DESCRIPTION OF THE ALGORITHM

The algorithm used here is an adaptation from the work of Qin et al. (1990) and
Vidale (1988). However, a triangular grid is employed rather than a square grid, for
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FIG. 3. a) The first step in the algorithm is the calculation of times for the six
neighbouring points around source point (square). The current wavefront is
represented by circles. The solid circle indicates the point with the minimum T on
the current wavefront. b) Timed points after several more iterations. Squares
represent points that are timed, but not on the current wavefront. ¢) Timed points
one iteration after c).

reasons that are discussed below. The first step is the calculation of the traveltimes
for the six points surrounding the source point (Figure 3a). The traveltime at each
point can be calculated using

T, =T, + hp (17)

where p is the phase slowness calculated using the averaged elastic parameters
between the source point and the point being updated, and 1, is the time at the
source grid point (normally zero). The six points surrounding the source now make
up the current wavefront. A separate logical array is used to identify those points
that lie on the current wavefront. Further updates always proceed from the global
minimum on the current wavefront, to ensure causality (ie. any point that is about
to be timed will have had all of the points along the associated raypath already
timed, see Qin et al, 1990). All legal neighbouring points around the current
minimum that have not been timed are updated using equation (3), with the
slowness calculated using average medium parameters at the centroid. If more then
one method of updating a particular point exists, all are calculated and the minimum
is used.

It is useful at this point to clarify the description with a number of definitions.
The current wavefront is taken to be all points in the grid that have been timed, but
are not completely surrounded by timed points (circles in Figure 3). This set of
points will roughly approximate the true wavefront at any given iteration. Once all
neighbouring points have been timed, a grid point is no longer active (squares in
Figure 3). A legal point to be timed is one for which at least two neighbouring
points are already timed. If only two neighbouring points have been timed, an
alternative cell configuration is used (Figure 4b).
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FIG. 4. a) Most common cell configuration for triangular grid. The point to be
calculated (A) is indicated by a diamond. b) Alternative cell configuration for
triangular grid. ¢) Most common cell configuration for square grid. d) Alternative
cell configuration for square grid. Note that corresponding finite-difference operator
is O(h) in the direction CA.

In order to calculate the slowness for an anisotropic medium, it is necessary to
know the direction of the wavefront normal. Taking points B and D in the timing
cell, it is possible to approximate the wavefront locally, assuming that the wave is
planar, The direction of propagation for a plane wave that satisfies the times T, and
To 1S then determined in an iterative fashion. Some error, however, will occur for
nonplanar wavefronts.

There are certain advantages of using a triangular grid rather than a square grid.
In the latter case, it is sometimes necessary to update away from the wavefront
using a T-shaped configuration (Figure 4d), which leads to a finite-difference
operator that is only first-order accurate in the approximate direction of propagation
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FIG. 5. a) Percentage error of finite-difference operator for a traingular grid. 6 is
the angle that the wavefront normal makes with the cell exis, CA, and lies in the
range -30°<0<3(°. The radius of curvature of the wavefront is 2 grid units. 1 = most
common cell configuration, 2 = alternative cell configuration (see Figure 4). b)
Same as a), but for square grid. Note that -45°<6<45°. 1 = most common cell
configuration, 2 = alternative cell configuration.

(Vidale, 1988). For the case of a triangular grid, it is always possible to use a
finite-difference operator that is O(#). Furthermore, a certain degree of error is
associated with the finite difference operator when the radius of curvature of the
wavefront is small (Vidale, 1988). Since the degree of error varies with direction,
this property is referred to here as grid anisotropy. Figure 5 shows error versus
propagation direction for both the square and triangular grids, for a wavefront with
radius of curvature equal to 2 grid units. The maximum error for the triangular grid
is 0.4%, whereas the maximum error for the square grid is 1.7%. In both cases, the
grid anisotropy becomes insignificant when the wavefront is nearly planar,

The program written to test this algorithm is still at a development stage. In the
next section, three heuristic examples are presented. The model for the first example
is isotropic and has two layers. The source is positioned in the low velocity layer,
and the example illustrates how the algorithm is capable of modeling head waves.
The second example is for a homogeneous, transversely isotropic medium, and is
intended to show the limitations of this algorithm for modeling anisotropy. The third
example models an antiformal structure containing an anisotropic zone.

EXAMPLES

The velocity model for the first example is illustrated in Figure 6. The source is
located in a layer with velocity 3000 m/s, beneath a layer with velocity 5000 m/s.
The entire calculated T array, containing 12744 points, is displayed in Figure 7.
Wavefronts, or surfaces of constant traveltime, are represented by the boundaries
between different shades in Figure 7. Moving outward from the source point,
snapshots of the wavefront at different times can be discemed. It is evident that
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Fig. 6. Velocity model for example 1. Asterisk marks position of source.
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Fig. 7. Traveltime function, T, calculated for example 1. Note head wave along
interface.
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after a certain time, when the corresponding ray has reached the critical angle, a
head wave is generated along the interface.

Figure 8 shows subsets of the T array, for a string of receivers at the top and
bottom of the grid, as well as an array of receivers along the side of the grid
(corresponding to a cross hole geometry). The part of the first arrival corresponding
to the head wave is clearly evident in the cross-hole example (Figure 8b).

The second example shows the performance of the program for a homogeneous
transversely isotropic medium. The parameters chosen correspond to measured values
for the Pierre shale (White et al., 1982), a weakly anisotropic material, and are
summarized in Table 1. The slowness surface, consisting of a gP and two ¢S sheets
{approximately polarized in the SV and SH senses), were calculated using equations
6-8. One quadrant of a cross section through the slowness surface is illustrated in
Figure 9a. The wave surface (or group velocity surface) is generated from the
slowness surface, and represents the theoretical wavefronts at © = 1s. Components
of the group velocity, V,, were calculated using (Kendall and Thomson, 1988)

Vf = &ﬁll_)j__ , (18)
quq
where D, is a cofactor of the matrix ¢ypp/p - 8, Note that the ¢gP and ¢SH
wavefronts are nearly elliptical, whereas the gSV wavefront is nearly circular,

Anistropic parameters for a more strongly anisotropic medium are also shown in
Table 1, corresponding to a shale under in situ conditions at a depth of about 1500
m in the Williston basin (Jones and Wang, 1981). The calculated slowness and
wave surfaces for this shale are illustrated in Figure 10. By the principle of duality,
points of inflection for the gSV slowness sheet in Figure 10a map to cusps in the
wave surface in Figure 10b (Singh and Chapman, 1988). Thus the expanding ¢SV
wave will produce three arrivals at some receiver locations. The waveform for
arrivals on the reverse branch of the wave surface (AB in Figure 10b) is the Hilbert
transform of the waveform for the forward branches of the wave surface (Singh and
Chapman, 1988). Based on these observations for a relatively simple example of
anisotropy, it is clear that wave propagation in anisotropic media is considerably
more complex than for isotropic media.

The calculated T arrays for the weakly anisotropic example are shown in Figure
11. The algorithm has correctly produced semi-elliptical wavefronts for gP and ¢SH
propagation, but nearly circular wavefronts for ¢SV propagation. However, an
artifact of the procedure is a noticeable tendency for the wavefronts to assume a
hexagonal shape. This is almost certainly a consequence of the grid geometry, and
is probably a result of systematic error in estimation of the direction of the
wavefront normal for curved wavefronts. If so, it is possible that this artifact can be
corrected for.

The program was successful in generating a T array for gP propagation for the
second shale, but not ¢S propagation. Possible reasons for the failure of the program
for the second shale are:

1) the algorithm is most accurate when the wavefront can locally be well
approximated by a plane wave. Hence, instabilities probably occur in the
neighbourhood of cusps in the ¢SV wavefront (see Figure 10b);
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Fig. 8. a) Traveltimes at top and bottom of the grid for example 1. Only direct arrivals have
been calculated. b) Traveltimes at side of grid, corresponding to a cross-hole geometry. In this
case some of the first arrivals are from the head wave, rather than direct arrivals.

Anisotropic Parameters

O Bo € 8 y p

(m/s) (m/s) (kg/m’)

1. Pierre 2074 869 0.110 0.090 0.165 25
shale

2. Willis- 3377 1490 0.200 -0.075 0.510 2420
ton basin

shale

Table 1. Anisotropic parameters for Pierre shale (White et al., 1982) and Williston basin shale
(Jones and Wang, 1981). See also Thomson (1986).
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Fig. 9. a) Slowness surface for Pierre shale. b) Wave surface for Pierre shale.
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2) the anisotropy coefficient for ¢gSH waves is 51%. This degree of anisotropy
probably exceeds the tolerance of the program due to errors in the calcuation of the
direction of the wavefront normal.

Research is continuing in an effort to determine the degree of anisotropy that can
accurately be modeled using this algorithm.

The third example involves a model that is both vertically and laterally
inhomogeneous in the form of an anticline, and contains an anisotropic layer (Figure
12). The anisotropy parameters (g, & and ¥) for this layer are identical to the Pierre
shale in the previous example. The model velocities vary continuously (ie. there are
no layer boundaries where the velocity function has a discontinuous jump), although
there is a zone with a strong velocity gradient. The source is positioned near the top
of the grid at the crest of the anticline. It is likely that ray tracing through this
model would be slow and difficult.

The calculated t arrays are shown in Figure 13. The first observation to note is
that the wavefronts are elongated in the vertical direction, since the velocity
generally increases with depth. Close examination of the qP and ¢SH wavefronts in
Figures 13a and 13c reveals that the wavefront becomes distorted in the anisotropic
layer, due to the faster phase velocity in the horizontal direction in this layer. Note
that the anisotropic axis is vertical throughout, and does not follow the trend of the
anticline. As expected, no distortion of the wavefront is evident for the gSV case,
since the wave surface here is nearly circular.

Figure 13 provides some indication of the importance of including anisotropy in
the forward-modeling calculations. If the model had been completely isotropic, the
shape of the P and SH wavefronts would have resembled the SV wavefronts in
Figure 13b. The distortion in the wavefront that occurs due to the presence of weak
anisotropy implies important differences in the traveltime and the angle of incidence
which further complicate other differences in the plane-wave reflection and
transmission coefficients (Daley and Hron, 1977).

CONCLUSIONS

A new method has been presented for calculating first arrival traveltimes by
solution of the eikonal equation using finite differences. The method is an extension
of studies by Vidale (1988) and Qin et al. (1990). Major differences from previous
methods are the use of a triangular, rather than a square, grid, and the extension of
the method to include transversely isotropic media.

The algorithm discussed here is valid for complex heterogeonous models with
moderate to large velocity contrasts, and tracks either head waves or direct arrivals,
However, preliminary results suggest that the method is valid for weak anisotropy
only, and 1s not capable of modeling wavefronts that contain cusps. This limitation
may not be overly restrictive for sedimentary rocks. Further studies are required to
determine the exact range of validity of this technique. Some refinement of the
algorithm is planned in order to reduce computation time and to address the
problem of systematic error in the calculation of the direction of the wavefront
normal, due to the assumption that the wavefront is locally planar. Another planned
refinement is the calculation of geometrical spreading along with the traveltime.
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FIG. 11. (next page) a) gP-wave traveltime array calculated for Pierre shale.
Compare to wave surface (Figure 10b). The wavefronts, represented by the
boundaries between different shades, are approximately elliptical in shape. The
tendency of the wavefronts to assume a hexagonal appearance is an artifact of the
grid geometry, and is likely due to a sysmtematic error in estimating the direction
of the wavefront normal. The wavefront is assumed to be locally planar. b) gSV-
wave traveltime array for Pierre shale. The wavefronts are approximately circular, as
expected from the theoretical wave surface (Figure 10b). c¢) ¢SH-wave traveltime
array for Pierre shale.

FIG. 12. (page after next) a) Vertical gP-wave phase velocity (o) for anticline
model. The velocity function is continuous and monotonically increasing with depth,
with a high gradient zone at an intermediate level. The source position is indicated
by the dot. b) Vertical gS-wave velocity (B,) for anticline model. ¢) Anisotropic
zone in anticline model (shaded area), just above high velocity-gradient zone.
Anisotropy parameters are the same as the Pierre shale: € = 0.11, & = 0.09, vy =
0.165.

FIG. 13. (two pages after next) a) Calculated P-wave traveltimes for anticline
model. The wavefront is generally elongated in the vertical direction due to the
velocity increase with depth. Note also the distortion of the wavefron in the
anisotropic zone on the flanks of the anticline. b) Calculated gSV-wave traveltimes
for anticline model. Wavefront distortion in the anisotropic zone is very slight. c)
Calculated gSH-wave traveltimes for anticline model.



356

0.0

(s) oy

a)

0.3

0.0

(s) awi)

b)

0.75

0.0

(s) awi

c)

0.75

400 m

0

FIGURE 11



b)

357

400 m
FIGURE 12

Velocity (m/s) N
N
o

Velocity (m/s)

N
~J
o
S



358

a)
b) T T
i ; i ?;ifmii{;
i , :
i:
i .
E‘*hini'sms:s i i§ : fit
e !i];i;;:giéiiﬂiﬂijij i l
c)

0 400 m
FIGURE 13

Time (s)



359

ACKNOWLEDGMENTS

I would like to thank Don Easley, who suggested the use of a triangular grid
and provided many other helpful suggestions, as well as my supervisor, Dr. Robert
R. Stewart. 1 am also grateful for the financial support of the sponsors of the
CREWES project at the University of Calgary.

REFERENCES

Bleistein, N., 1984, Mathematical methods for wave phenomena: Acedemic Press,

Cerveny, V., Molotkov, LA., and Psencik, 1., 1977, Ray method in seismology: Univerzita Karlova,
Prague.

Crampin, S., Chesnokov, E.M., and Hipkin, R.A., 1984, Seismic anisotropy--the state of the art:
Geophys. J. Roy. Astr. Soc., 76, 1-16.

Daley, P.F., and Hron, F., 1977, Reflection and transmission coefficients for transversely isotropic
media: Bufl,, Seis. Soc. Am., 67, 661-675.

Jones, E.A., and Wang, H.F., 1981, Ultrasonic velocities in Cretaccous shales from the Williston
basin: Geophysics, 46, 288-297.

Kendall, J-M., and Thomson, C.J.,, 1989, A comment on the form of the geometrical spcreading
equations, with some numerical examples of seismic ray ftracing in inhomogeneous, anisotropic
media: Geophys. J. Int,, 99, 401413,

Musgrave, M.JL.P., 1970, Crystal Acoustics: Introduction to the study of elastic waves and vibrations
In crystals: Holden-Day.

Qin, F,, Olsen, K.B., Luo, Y., and Schusier, G.T., 1990, Solution of the eikonal equation by a finite-
dg{girerg:(;: method. Presented at the SEG 60th Ann. Ingd. Mig., San Francisco, Expanded Abstracts
1004-1007,

Rothman, D.H., 1988, Cellular-automaton fluids: A model for flow in porous media: Geophysics, 53,
509-518.

Singh, S.C., and Chapman, C.H., 1988, WKBJ secismogram theory in anisotropic media: J. Acoust.
Soc. Am., 84, 732-741.

Thomsen, L., 1986, Weak eclastic anisotropy: Geophysics, 51, 1954-1966.
Vidale, J., 1988, Finite-difference calculation of travel times: Bull., Seis. Soc. Am., 78, 2062-2076.

Vlaar, N.J., 1968, Ray thcory for an anisotropic inhomogeneous elastic medium: Bull,, Seis. Soc.
Am., 58, 2053-2072.

White, JE., Martinequ-Nicoletis, 1., and Mocnash, C., 1982, Measured anisotropy in Peirre shale:
Geophys. Prosp., 31, 709-725.

APPENDIX
Basic ray theory for inhomogeneous, anisotropic elastic media

A brief introduction to ray theory for inhomogenous, anisotropic elastic media is
presented here. For further detail, the reader is referred to Vlaar (1968), Cerveny et
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al. (1977) and Kendall and Thomson (1989). The equations of motion are derived
from generalized Newton’s law and generalized Hooke’s law. In the absence of
sources, the frequency-domain equations of motion are

(eruu*',)J + (szui = 0 'Y (A‘l)

where ¢, is the 81-component elastic stiffness tensor with symmetry properties ¢,
= Chy = Cyy = Cuyp U; is the ith component of displacement, p is density, Einstein’s
summation convention for repeated indices is used and a comma implies spatial
differentiation. In the ray method, a solution is sought in the form of an asymptotic
series

= Ui(x)
U (X,) = 3 ———— g (A-2)
=0 (L))"

Substitution of (A-2) into (A-1) leads to a new system of differential equations
(Cerveny et al., 1977), all of which are set to zero. A high frequency approximation
is obtained by setting the coefficient of @* to zero:

ciquio}pipl -pUP =0. (A-3)
A non-trivial solution to (A-3) requires that

detlplp;cu” - pajkl = O » (A‘4)
where p;, = du/dx; is the slowness vector. Equation (A-4) may be regarded as a
nonlinear first-order differential equation for the wavefront, or eikonal, T, and thus
is the equivalent to equation (1) for the isotropic case. Multiplying (A-4) by V%,
where v is the phase velocity, leads to the Kelvin Christoffel equation

det| T, - pv8, =0 , (A-5)

where I'; = ninicyy, and p; is the unit vector normal to the wavefront.



