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2 1/2-D elastic ray-Born migration/inversion theory for
transversely isotropic media

David W.S. Eaton and Robert R. Stewart

ABSTRACT

Linearized (ray-Born) scattering formulae are derived that relate the observed
seismic wavefield to perturbations in qP- and qS-wave velocities, density and the
three Thomsen anisotropy parameters (_, _ and "/) for transversely isotropic media.
These formulae form the basis for a 2-_ dimensional migration/inversion algorithm
that accounts for anisolropic effects in both wave propagation and scattering. The
technique is applicable to seismic data acquired across geologic strike over a 2-D
inhomogeneous medium. The 12-norm inversion is carried out by minimization of an
objective function that incorporates a priori data and model covariances, so that the
problem is always well-posed and can accommodate insufficient and inaccurate data.
Anisotyopic model parameters that are obtained in the inversion may be useful for
sand/shale discrimination, characterization of thinly laminated rock layers or analysis
of fracturing.

INTRODUCTION

Seismic inversion attempts to reconstruct earth parameters using experimental
observations, based on some model for wave propagation. Solution to the seismic
inverse problem is often difficult because the relationship between measured values
and model parameters is generally non-linear. A useful linearized approach stems
from the Born approximation, based on an inverse scattering formalism originally
developed in quantum physics.

The literature contains numerous examples of this method applied to seismic
data. Born-inversion techniques have been developed for constant-density acoustic
media (Cohen and Bleistein, 1979; Beylkin, 1985; Miller et al., 1987), variable-
density acoustic media CRaz, 1981; Clayton and Stolt, 1981; Weglein et al., 1986;
LeBras and Clayton, 1988) isotropic-elastic media (Beydoun and Mendes, 1989;
Beydoun et al., 1989, 1990; Beylkin and Burridge, 1990) and fractured media (Tufa,
1990). All of these methods linearize the forward problem that relates the scattered
wavefield to small perturbations in the medium parameters. An additional high
frequency approximation based on ray theory is often invoked in order to permit the
use of inhomogeneous reference models (Bleistein and Gray, 1985; Miller et al.,
1987; Beydoun and Mendes, 1989; Beylkin and Burridge, 1990).

Methods of performing Born inversion can be divided into two major categories.
Asymptotic-direct methods have been developed based on the theory of the inverse
generalized Radon transform (Beylkin, 1985; Cohen et al., 1986; Miller et al., 1987,
Beylkin and Burridge, 1990). The alternative, indirect approach seeks a solution that
minimizes (in the /2 norm) an objective or cost function (LeBras and Clayton, 1988;
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Beydoun and Mendes, 1989). This approach has several advantages over direct-
inversion techniques: first, it is more straightforward to incorporate a priori
information into the inversion, and secondly, insufficient (eg. single component) and
inaccurate data can be accommodated in a natural way.

In their implementation, both the direct and indirect methods involve an imaging
step that resembles prestack depth migration, followed by an adjoint operation that
images the perturbations in the medium parameters using the amplitude-versus-offset
information in the observed data. Because of the similarity of the imaging process
to classical migration, this technique is often referred to as "migration/ inversion"
(M/I) to distinguish it from more general elastic non-linear inversion methods (eg.
Tarantola, 1986).

This study will focus on the feasibility of solving for additional anisotropic
parameters in the inversion procedure. The model is assumed to be transversely
isotropic, the simplest form that anisotropy can take aside from pure isotropy. A
single infinite-fold axis of symmetry exists for this symmetry class (Figure 1). The
minimum number of parameters needed to describe the medium is six, compared to
three for the isotropic case. The three principle causes mechanisms for transverse
isotropy in sedimentary rocks are (Crampin et al., 1984):

1) Lithologic anisotropy caused by parallel alignment of elongated grains during
deposition, particularly in clays and shales;

2) Periodic thin-layered (PTL) anisotropy produced by alternating low- and high-
velocity layers, and;

3) Crack-induced anisotropy caused by a preferred orientation of cracks or
fractures due to a present or fossil stress field.
These three causal mechanisms suggest that information obtained about anisotropic
parameters for a transversely isotropic medium could be used to help discriminate
between sands and shales, identify and characterize thin-layered zones, and infer
crack orientation and density. Figures 2 and 3 show scatter plots of anisotropic
parameters and ct/13 for sandstones and shales, based on Thomsen's (1986)
compilation of measured anisotropy of sedimentary rocks. These graphs suggest that,
in general, shales are more strongly anisotropic than sandstones, although the
scatter is large and the data are not adequate to easily delineate trends. One
exception appears to be the good correlation between y and e (Figure 3b). The data
here suggest that the ratio y/e is higher for shales than sandstones.

In addition to extending the M/I technique to include transversely isotropic
media, this study will explicitly adapt the equations for 2-_ dimensions using the
method of stationary phase. The term "2-_ D" (Bleistein, 1986; Bleistein et al.,
1987) implies that the model is assumed to be invariant in one direction, with

Fig. 1. (next page) Principle causes of transverse isotropy in sedimentary rocks
(Crampin et al., 1984). a) Lithologic anisotropy, due to preferred alignment of
elongated mineral grains during deposition, b) Periodic thin-layered anisotropy due
to alternating low- and high-velocity layers, c) Crack-induced anisotropy, from
parallel alignment of open or fluid-filled cracks. Of these, only lithologic anisotropy
is intrinsic (ie. independent of wavelength). The other causes depend on averaging
of the medium parameters over the seismic wavelength. Normally, the slow direction
of wave propagation is parallel to the axis of symmetry.
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data recorded in the plane of symmetry. This notion arises from the common
exploration scernario in which sources and receivers are aligned in a linear, rather
than planar, fashion. This approach accounts for 3-D spreading and scattering
without calculating full 3-D Green's functions.

RAY-BORN APPROXIMATION

The main aspects of the ray-Born approximation for elastic media are reviewed
here, following closely the derivation of Beylkin and Bunidge (1990). The
frequency-domain elastodynamic Green's tensor (dyadic) for an anisotropic,
inhomogeneous 3-D medium satisfies

(ct,_qGjm),= + t.o2pGjt = -_(x-s) , (1)

where ct,,_q is the 81-component elastic stiffness tensor with symmetry properties
ct = c,,- = c_ = c _,; p is density; both c_,_q and p are functions of positionmpq q mqp . . .

x; and G,t_,to;s) is the T_ component of dtst)lacement at posmon x due to a source
in the j-t:'l_rection at position s. In addition, _jt is the Kronecker symbol, 8(_) is the
dirac delta, Einstein's summation convention for repeated indices is used and a
comma implies spatial differentiation.

The first step in the procedure is to split the medium parameters and Green's
tensor into two parts,

c_ = _,v, + cl',vq, (2)

p:p0+p-, (3)
and

Gj_= G°t + Uj_, (4)

where co and n° are the stiffnesses and density of the reference medium, andmpq . r

G°t(x,t.o;s) satisfies
O 0 O 2 0

(c,,_,Gj,,,)_, + p co G# = -_j,5(x-s) . (5)

c_',_q and p" represent small perturbations from the reference parameters, and _t is
the scattered wavefield (ie. the part of the total wavefield that is not accounted for

Fig. 2. (next page) a) Scatter plot of measured values of e vs. (z/J3 for sandstones
(squares) and argillaceous rocks (crosses) from Table 1 in Thomsen (1986). Average
sandstone and shale values are circled, b) Scatter plot of _ vs. ot]_ for same rocks.
c) Scatter plot of T vs tx]13for same rocks.

Fig. 3. (page after next) a) Scatter plot of 8 vs. e for sandstones (squares) and
shales (crosses) for same rocks as Figure 2. The poor correlation between _ and e
implies that elliptical anisotropy is uncommon (see Thomsen, 1986). b) Scatter plot
of %1vs. e for same rocks. These data show better correlation and suggest that
(_//_),_,_> (T/e)md.C) Scatter plot of _ vs. T for same rocks.
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by the reference Green's tensor). Subtracting equation (5) from equation (1) gives

(c°_,w,Ujp.,)., + p°eo2U? = -(c'z_qGjp._)., - p'o)2G_t . (6)

The parameters on the left side of equation (6) belong to the reference medium,
while the right side plays the role of body sources. Therefore, U_ may be expressed
as a spatial convolution of the source term with the reference Green s functmn,

ujk(r,co;s)= + G°k(r,o3;x)p'o_2G_,(x,o3;s) . (7)
D

As noted by Clayton and Stolt (1981) for the acoustic case, this expression differs
from quantum scattering theory, since it involves spatial derivatives of the medium
parameters However, if the domain D containing nonzero c; and p" is finite, then• • .... relPq . •

equation (7) can be slmphfied by integrating the terms mvolwng cl,,,q by parts,
since the boundary terms vanish (Beylkin and Burridge, 1990). Hence, equation (7)
may be rewritten

.,Q

Uj_(r,co;s) = JdxG°_.,(r,co;x)c;mpqGjp._(x,o3;s) + G°k(r,m;x)p •o)2G_,(x,m;s) . (8)
D

Note that equation (8) is exact but non-linear for G;k. However, if the perturbations
c_w_ and p" are small, then

G_,(x,co;s)= G_,(x,co;s) . (9)

Making this substitution into equation (8) yields the (first) Born approximation,
fll

/ o . " o . o . , 2 oUjk(r,C0;S) dxGtk.,,(r,m,x)c_,v_Gjp._(x,m,s) + G_k(r,o),x)p ¢0 G_,(x,m,s)" . (10)
O

To obtain a more formal series solution, rewrite equation (7) in operator notation,

U = G°VG , (11)

where the operator V represents the scattering potential, and is given by

V = [c;,,_,_ + c,',,e, ax,, + °)=P'] " (12)

Adding Go to both sides of equation (11) gives the Lippmann-Schwinger equation,

G = Go + G°VG , (13)

for which the solution is well known:

G = (I-G°V)"G°. (14)

The operator (I-G°V) "_can be expanded as a power series (the Born series),
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(#O°V)' = Z-.,(G°V)* .
1;::0

Truncation of the Born series after the k=l term represents the first Born
approximation. Higher-order Born approximations are also possible in seismic
applications (Snieder, 1990).

A zeroth-order ray approximation to the elastodynamic Green's tensor,
representing the direct qP and qS1 and qS2 waves may be written

F°k,(x,C0;s) = Ae_(x)_(s)e i*'" + AS'_(x)_(s)e '_" + AS2_(x)_(s)e "_'_ . (16)'

This expression is patterned after the equivalent expression for the isotropic case
(Beydoun and Mendes, 1989). The notation F°_ is used to distinguish the high-
frequency approximate Green's tensor from the exact Greens tensor, G° . By
convention, the $1 arrival is associated with the shearwave that is polarized in the
SV sense (approximately), and the $2 arrival is associated with the shearwave
polarized in the SH sense. Since only one arrival for each wave type is accounted
for, the expression is valid only when the wave sheets do not contain cusps or
triplications (see Musgrave, 1970). This restriction limits the range of anisotropic
behaviour that can be analyzed, but is much less restrictive than, for example, the
assumption of elliptical anisotropy.

The unit eigenvectors _1, U and _s form the ray-centred co-ordinate system
(Cerveny, 1985) for the isotropic case, where _J is parallel to the ray and _1 and U
are in the plane of the wavefront (Figure 4). In general, however, U, _2 and _J are
unit particle-motion polarization vectors and are not orthogonal. The amplitude terms
Ae(x,s), AS_(x,s) and A_(x.s) and traveltimes ze(x,s), _(x,s) and "t'_(x,s) satisfy the
corresponding transport and eikonal equations in the ray-centred co-ordinate system
(Cerveny, 1985). In addition, the amplitude terms are chosen to satisfy the boundary
conditions at interfaces.

The Green's function for the scattered direct arrival may be written in a similar
fashion.

F,Ot(r,c0;x) e^3 ^3 l.,_. s1^1 ^_ ._., s_^2 ^2 ._= A e,(r)e_(x)e + A e,(r)ek(x)e + A et(r)ek(x)e . (17)

The superscript ~ is used to denote the direct arrival from the source, and the
superscript ^ is used for scattered direct arrival. The leading singular term in the
spatial derivatives of equation (16) may be written (Beylkin and Burridge, 1990)

F_,,,.(x,c0;s) = i(0"cP,.AraJ(x)e_(s)e '_" + iooxS',.AS'_(x)_(s)e "_''

+ io)xs',. AS2_(x)e_(s)e '°'= . (18)

The expression for the spatial derivative of the scattered Green's function (equation
(17)) is very similar.

Note that for the direct arrival from the source,

Otxe,. = ft. and l_xs.. = ft. , (19)
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Fig. 4. Ray geometry for incident and scattered rays, showing unit eigenvectors.

where _ and 13are the reference qP- and qS-wave phase velocities in the direction
of propagation, and fi is the unit normal vector to the wavefront. For the scattered
direct arrival,

^ p A _ ^ct'__. = -n., and xs.. = -n., (20)

Substituting the approximate Green's tensor, along with (19) and (20) into the
Born formula (10), the scattering equation for an incident wave type (i) and a
scattered wave type (s) can be written for a specific parameter linearizaion (q) as

O_'k= -tO2J dD L_/_(x)_m_4 (r,x,s) C#(r,x,s)e i_t'''; (21 )

The vector sL'(x) and the parameter linearization matrix Lq. govern the amplitude
radiation pattern. _m is the model parameter vector, A(r,x,s)"is the total geometrical
spreading term and C(r,x,s) represents the ray coupling with the source and receiver.
These are defined for specific incident and scattered waves below.

2-½ D STATIONARY PHASE APPROXIMATION

We now specialize the analysis to the following case:
1) the medium has transversely isotropic symmetry or higher (the structure of

the elastic stiffness tensor is discussed below);
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2) medium parameters do not vary in the direction normal to the plane
containing sources and receivers (the sagittal plane), given by x2 = 0;

3) the anisotropic axis of symmetry lies in the sagittal plane.

Under these conditions, the two qS waves are decoupled and qP waves are coupled
only with qS1 waves (for rays within the sagittal plane), thus allowing the scattering
formulae to be considerably simplified. In addition, these conditions imply that
x_]_.o = O.

For xl and x_ fixed, and for large to, e_'_will oscillate very rapidly as a function
of x2, and the principal contribution will occur in the vicinity of the point of
stationary phase (x2--0). Equation (21) may then be rewritten

b_'_-_ -o_2f f dxldx, LI, si'(x)_m_(r,x,s)C#(r,x,s) f dx2e '_c''') , (22)
D"

where domain D" is the cross-sectional area of domain D in the x_-xj plane, and L,
s, A and C are evaluated at x2--0. The Taylor expansion for x about the point of
stationary phase may be written

x(x_) = x(0) + x2_x_/21o, (23)

ignoring third and higher-order terms. Substituting (23) into equation (22) gives

b_:=-to_ffdx, dxjL,_i'(x)SmqpA(r,x,s)C#(r,x,s)e"* f dx2exp(itox22x.2_/2)10 . (24)
D"

The integral over x2 can be evaluated using the formula (eg. Bender and Orszag,
1978)

yd2xexp(itox2;x_ lo)) = een'23arda(x_ lo)"_a. (25)

The factor in (25) alters the phase and amplitude to compensate for out-of-plane
scattering. The scattering formulae can then be written explicitly (omitting the
constant 23an_r2)for individual qP-qP, qP-qS1, qSl-qP and qSn-qSn contributions as

Jdx[c;,,_,(a&)'_a-fi,eJsepJ P _tpe,%](x.22)Uj kel"- .to3_el,V4 _ , ^J~J -1/2

xAel'(r,x,s)_(r)6_(s)e i®_'_'_'_ (26)

3/2 i_4 f • -1 ^ AI--3 " ^l"J -It2U_s _- -to e dx[c,_,(a_) n,_fi,e,e, - p _pe,e,](z_2)
J

"A_S(r,x,s)F_(r)e_(s)e _'_''_'J , (27)

f • A3--! -112
U_-- -togaed" dx[c;_,(_&)"fi,,n,_]e_ - p _jee,e,](xa2)

_ASe(r,x,s)_(r)e_(s)e _'_'_'_J , (28)

and
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• ^_--.I .I/2
USff'= -COme"' dx[c;_,,(_)"_.fi,_g; - p fi,,e,e,](x:,)

xAS'S'(r,x,s)d_(r)eT(s)e i_'_'_'_ , (29)

where

Aee(r,x,s) =-Ae(x,s)Ae(r,x) , (30)

ApS(r,x,s) =-Ae(x_s)ASl(r,x) , (31)

ASe(r,x,s) =-ASl(x,s)Ae(r,x) , (32)

AS"S'(r,x,s) ---AS"(x,s)AS_(r,x) , (no sum over n) (33)

and

_e(r,x,s) _- xe(x,s) + x'(r,x) , (34)

xeS(r,x,s) -= xe(x,s) + xS'(r,x) , (35)

xSP(r,x,s) -= xS_(x,s) + xe(r,x) , (36)

x_S'(r,x,s) =- xS'(x,s) + xS_(r,x) . (no sum over n) (37)

Note that both the stationary phase approximation and the ray approximation to the

elastodynamic Green's functions represent high-frequency asymptotic parts of the

full solution, and hence are mutually compatible approximations. This approach

significantly reduces the computational overhead, by permitting 2-D, rather than 3-D

generation of background Green's functions.

WEAK TRANSVERSE ISOTROPY

The special case of a transversely isotropic medium with a vertical axis of

symmetry (TIV) is now considered. This special case can easily be generalized to

permit any orientation of the symmetry axis within the sagittal plane. For a TIV

medium, the 6x6 stress matrix has the form
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C. C** C. 0 0 0
C,, C. C. 0 0 0

C = c. c. c33 0 0 0 (38)
0 0 0 C. 0 0
0 0 0 0 C. 0
0 0 0 0 0 Ca

where Cn = C. - 2Cry. The relationship between the elements of the stress matrix,
Cu, and the 21 nonzero elements of the corresponding stress tensor, G--, is
summarized m Table 1. Noung that for rays wathm the sagmal plane, e_ = ei = 0, t

-2 =_ ^2 ^2

= 1,2,3, for qP and qS1 waves and el = ej = e, = e3 = 0 for qS2 waves, the vector
s_ for a TIV medium may be written

A .i ,% ,%3_3 i% A3-- 3 ,% h A A A i% ,% ,%

ser = (_0_) (ntfi_e_el, n/_3e3e3' ~ 3-3 ~ 3~3 - 3-3 ~ 3-3njn3e_e3+nsn_e3e_, n_nte3ej+n3n3eje_+
A ^ A A )- 3-3 - 3-3 (39)n_nse3ej+njn_e,e,, 0, -(_dQcos0 ee T ,

-I ,% -- AI--3 -- I--3 -- I--3 -- I--3 -- 1--3

Srs = (a_) (n,n,ele,, n/l,e3e 3,,% ,%,-3 ,% ^ ^ ^ ^ ^ ^ ^n_n3e_ej+n3n_e3e_, nlnze3e3+nsnse_et+
^ ^ ^ ^ _)- 1-J - I~3 (40)n,n,e3e,+n3n_e,e3, 0, -(d cosOeS) T ,

sse=-s es, (41)

s_'_'= (l_fI)-'(_,_,_;eL_3_,_;e_,_,_,_;+_3_,_'e_,_,_,_e_+_3_,_e_+
_,fis_e_+a3fi,_e _, O, -(l_)cos0SS) 'r , (42)

and

s=_ = (1_)_(0, 0, 0, _3fl3, _,fi3, -(1_)) _ , (43)

where

m' = (c., c,3,c., c.,, c,,, p)_, (44)

and 0_' is the angle subtended by the particle-motion vector for the incident and
scattered rays. For the degenerate case of complete isotropy, C. = C_3= _.+21.t, C.,
= Ca = P. and C,3 = _., where k and I-t are the lam6 parameters. After some algebra,
the scattering vector can then be written

s_ = (ot°)a(1, 2cos:(_"_, (O_°)_cosCee)r, (45)

Ses = (0_°13°)'*(0,sin2_ _'s,o_°_°sinCpes)_, (46)

Sse = -ses , (47)

Sw'w = ([3°)'2(0, cosZd__, ([_°)_cos_SS)v , (48)

and
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Table 1. Stress tensor for TIV medium

Cl,,_q C U

Cllll Cll

c== C.
cj_j_ C_j
clm C.-2C_
czzn Cn-2Ca
c._ C_
c=. C.
c_. C_j
cj_z_ CIj
c_2n C.,
C=z$ C44

C..,2_ C _

c=,_ C,,

cjm C,,
cm_ C.,
cm: C_
cmj C_
cm_ Ca
qm Ca

ssn.m = (i]o).2(0, cos_SS, (_o)2)r , (49)

where in this case the reference model parameter vector is

m' = (k,, _t, p)_. (50)

and _ is the angle subtended by the incident and scattered rays. The only aspect of
the ray geometry that plays a role in scattering for the isotropic case is the angle
between the incident and scattered rays. In the anisotropic case, the scattering also
depends on the angle that each of these rays makes with the axis of symmetry.
Thus, although more parameters are required to describe the model, the scattered
energy also carries more information about the medium.

For modeling and inversion using the reference model parameters, the matrix L
takes the simple form

L_, = 8_, (51)

However, because the elastic stiffnesses are an inconvenient pazameterization for
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most geophysicists, it is desirable to change to a more intuitive set of model
parameters. For the case of a TIV medium, a useful alternative parameterization is
given by

m 2 = (o_,[_,,a,_,y,py , (52)

where the first five parameters are defined (Thomsen, 1986)

o_-_(C,,/p)'_, (53)

13,-=(c.,,/p)''_, (54)

a _-[(c,, + c,,)_- (c,, - c,,)_][2c,,(c,,- c.)]", (55)

e ---(Cu - Cj,)(2Cj,)", (56)

and

y-= (Cnn- C.)(2C.)" . (57)

For this parameterization, the matrix L can be written (for an isotropic background)
as

2a°p ° 0 0 2(a°)2p° 0 (a°)2
2&,p° 0 0 0 0 (a°,)_

L= = 2&p ° -413°,p° (a°)2p° 0 0 (a.°)2-2(13.°)2 (58)
0 213o90 0 0 0 (I_,°)2
0 213o90 0 0 2(13_2pO(13o)2
0 0 0 0 0 1

/2-NORM INVERSION

It is possible to cast the inversion as an /2-norm optimization problem• A general
objective function can be defined (Tarantola, 4987)

E = l/2(au*.C,a.au + am*.C.".am) , (59)

where au and am are data and model residual vectors, Cu and Cm are a priori
covariance operators associated with the data and model, respectively, and * denotes
conjugate transpose. In the Born approximation, we have

au = u_,, - B.Sm (60)

where B is the Born operator. The gradient of the objective function, OE/Om is

VE = -B*.Cul.au + C.'1.5m (61)
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A vector pointing in the steepest-descent direction (establishing a line of search for
updating the model) is -VE. The model update can then be written

8m = G(-VE) (62)

The step length, o, is found by an independent single-parameter search. Following
LeBras and Clayton (1988), the backprojection operator B* can be determined by
fh-st defining the inner product of two vector x and y in V as

<x,y> = SdV x*y (63)

The backprojection operator, B*, is then fully defined by

<Su,B.Sm> = <B*.Su,Sm> (64)

The operator B* acts as a filtered backprojection of the data. Inclusion of the model
covariances in the objective function acts as a damping term to ensure that the
invsersion does not diverge too far from the initial model, and also to ensure that
the problem is always well-posed (Tarantola, 1987).

CONCLUSIONS

A method has been outlined for performing migration/inversion for transversely
isotropic media. The algorithm accounts for both differences in wave propagation
and scattering caused by anisotropy. Incorporation of anisotropy may result in
improved subsurface images for some areas. Furthermore, inversion for the
anisotropic parameters (8, e and T) may assist in discrimination between sands and
shales, analysis of periodic thin layering and fracture detection.

Several important observations can be noted concerning the form of the
scattering functions for a TIV medium, and the potential for Born inversion
algorithms:

1) In order to obtain all 5 elastic parameters plus density using 2-D data, 3-
component sources and receivers are required. Using P-SV data, at most 4 out of
the 5 elastic parameters are resolvable.

2) Only P-P scattering is sensitive to perturbations in the parameter _; only SH-
SH scattering is sensitive to changes in the parameter "/.

3) In the zero-offset case, mode-converted backscattered energy is possible, due
to perturbations in the anisotropic parameters.

4) For the isotropic case, the angle-dependent parameters in the scattering
functions depend only on the angle subtended between the source and receiver rays.
For the anisotropic case, the scattering function depends also on the absolute
direction of the incident and scattered rays with respect to the axis of symmetry of
the anisotropic medium (in this case, vertical).

It is well known that in the absence of a wide range of offsets, multiparameter
seismic inversion (isotropic) is non-unique. Intuitively, adding more parameters
should compound the non-uniqueness problem. However, point 4 above suggests that
perhaps for anisotropic scattering, the additional information conveyed by the
raypath geometry will partially offset the non-uniqueness problem.
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