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Physical seismic modelling of shear-wave singularities on 
a sphere of orthorhombic phenolic: A research note 

R. James Brown and Eric V. Gallant 

INTRODUCTION 

A great deal of theoretical development and numerical modelling of seismic 
anisotropic wave propagation has been carried out, particularly within the last decade. 
Only within the past few years have a half dozen or so institutions begun scaled 
laboratory experiments, or physical modelling, to determine how well the various 
numerical schemes predict the actual physical results. A particular numerical modelling 
algorithm might be inadequate for several possible reasons, for instance: the basic 
theoretical assumptions on which the model rests may be in partial error or incomplete; 
the algorithm itself might involve computational approximations, perhaps to make the 
problem numerically tractable, that introduce significant error; or the routine might be 
derived on an idealized basis that is somewhat at variance with the physical reality (e.g. 
an elastic model representing an anelastic reality). There is therefore considerable 
interest on the part of seismic anisotropists to compare the results of numerical and 
physical modelling for which “the same medium” is used in the modelling procedure, 
that is, using input parameter values (e.g. stiffnesses, velocities) for a numerical 
“experiment” that are identical to those of the particular physical medium used in the 
corresponding laboratory experiment. 

One such area of interest, at present, is in the behaviour of shear waves near 
special directions of propagation known as singular directions or singularities, which 
occur at places where the two shear-wave phase-velocity surfaces meet (i.e. touch or 
intersect). Near the commonest kind of singularity, the point singularity, a shear wave 
might exhibit anomalous behaviour, such as rapid variation in polarization or 
amplitude, similar to what might be observed near cusps on the group-velocity surface, 
even when the anisotropy is not sufficiently strong to cause cusps (Crampin and 
Yedlin, 1981; Crampin, 1991). Point singularities have now been recognized by Bush 
and Crampin (1987) and Bush (1990) in VSP data from the Paris Basin, and such 
observations may become increasingly important in exploration seismology, not least 
because point singularities may well occur along nearly vertical raypaths in sedimentary 
basins. If it were possible to determine the directions of such singularities, it could 
place tight constraints upon the nature of the internal anisotropy of the rockmass 
(Crampin, 1991). 

Our objectives in this physical modelling work are, in the short term, to look for 
singular directions in an orthorhombic modelling medium, to examine the variations in 
polarization and amplitude near such directions, and to compare our physical results 
with numerical results obtained by collaborators; and in the long term, to elaborate how 
one might use singularity-related observations in exploration and/or development, and 
to develop the necessary processing code required to this end 
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SHEAR-WAVE SINGULARITIES 

The concept of singularities in shear-wave slowness and phase-velocity 
surfaces for anisotropic propagation media has been known for many years. Duff 
(1960), for example showed that the two shear-wave sheets come into contact at least 
twice, and usually much more frequently, in directions (of slowness or phase velocity) 
known variously as singular directions, singular points, or simply singularities. There 
are three types of singularity: kiss singularities, line singularities and point singularities, 
in all of which the slowness and phase-velocity surfaces are analytically continuous. 
Kiss singularities are points where the two surfaces touch tangentially but do not 
intersect (Figure la). They may occur in any anisotropic symmetry system and, in the 
case of hexagonal or transverse-isotropy symmetry, there is always one at the 
cylindrical symmetry axis. Line singularities (Figure lb), which only occur for 
transverse-isotropy symmetry, are no more than simple intersections of the two 
surfaces in a circle centred on the axis of cylindrical symmetry (Crampin and 
Kirkwood, 1981; Crampin and Yedlin, 1981; Crampin, 1991). As Crampin (1991) 
states, kiss and line singularities are not expected to cause major disturbances to shear 
wavetrains; nor are any associated anomalies in polarizations or amplitudes likely to be 
observable in seismic data. 

FIG. 1. Sketches of the three kinds of singularity: (a) kiss singularity; (b) line 
singularity; and (c) point singularity (after Crampin, 1991). 
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Point singularities are points where the surfaces not only touch but also cross 
each other, and in such a manner that they are continuous through the vertices of cones 
on the inner and outer velocity sheets (Figure lc). They are sometimes known in the 
crystallographic literature as conical points. These singularities do not occur in 
transverse isotropy, but necessarily occur in all other symmetry systems. Point 
singularities may significantly disturb the behaviour of shear waves on neighbouring 
rays. Related to the fact that the curvature of the phase-velocity surface near such a 
point is very great, and that continuous paths on the surface passing through the 
singular point cross from the inner to the outer sheet (and vice versa), is the 
complicated behaviour of shear-wave polarizations, which can vary by up to 180” over 
neighbouring rays in the vicinity of the singularity. 

In order to simulate the wave propagation in the Paris Basin, Bush and Crampin 
(1987) and Bush (1990) assumed a model of uniform rock with a combination of 
periodic thin horizontal layering and parallel vertical fluid-filled cracks. Periodic thin 
layering (PTL) alone leads to transverse isotropy (having a vertical symmetry axis), 
while parallel vertical fluid inclusions alone, an example of extensive-dilatancy 
anisotropy (EDA), produces azimuthal anisotropy (having a horizontal symmetry axis), 
each of these a special case of hexagonal or transverse-isotropy symmetry. The 
combination, however, gives rise to orthorhombic symmetry and, contrary to the case 
for either PTL or EDA alone, the necessary existence of at least some point 
singularities. Thus, for the purpose of physically modelling propagation phenomena 
near point singularities - relevant to the simulation of basins with both PTL and EDA - 
orthorhombic materials are certainly appropriate, whereas transversely isotropic 
materials are quite inadequate. 

EXPERIMENTAL PROCEDURE AND INITIAL OBSERVATIONS 

Our previous physical modelling experiments using the industrial laminate 
Phenolic CE were always carried out on rectangular prisms of the material (e.g. cubes 
and slabs) (Cheadle et al., 1991; Brown et al., 1991). In these studies, stiffnesses of 
each sample were determined and these showed small but significant differences. Some 
of these differences were probably due to the nonuniformity of different samples but 
some was probably also due to the fact that, relative to zero-offset or axial raypaths, 
oblique raypaths were necessarily of increasing length as offset increased, possibly 
introducing uncertainties into the comparison of traveltimes (and velocities) as a result 
of possible source/receiver array effects, anelasticity, etc. (Brown et al., 1991). This is 
one reason why we wish to shoot and record over a sphere of material, for which all 
raypaths will not only be of equal length but also will impinge normally on all source 
and receiver transducers. We will therefore determine the stiffnesses of the sphere 
independently - for all of the above reasons. 

We have machined a phenolic sphere and initiated experiments on it using the 
set-up shown in Figure 2, together with the source/receiver transducers and the data 
acquisition described previously (Cheadle et al., 1991). The procedure is to acquire, in 
general, nine traces at each point over the sphere. The nine traces correspond to the nine 
combinations of source and receiver polarizations, using as the three component 
directions: vertical (normal to the surface), north-south (tangential) and east-west 
(tangential). This will, in effect, yield a vector transfer function (or impulse response) 
for each point or propagation direction, allowing one to simulate seismic traces for any 
source polarization (Igel and Crampin, 1990). 
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To date, we have acquired data along seven directions, which we specify by
their direction cosines, the !-direction being the fastest and the 3-direction the slowest
directions for /'-wave propagation. The seven initial directions are: (1,0, O), (O, 1, O),
(O, O, 1) (O1VM, VM), (VM1 O, VM)1 (VM1 VM1 O) and (VT/3, VT/3, V3/3). At
this writing, the traces from these shots have not been processed or analyzed but we
intend to discuss them at the 1991 CREWES sponsor meeting.

FlG. 2. Photograph of the laboratory set-up used in shooting and recording on the
phenolic sphere. Transducers are in contact with the sphere at its top and
bottom.

FUTURE WORK

The stiffnesses, which can be determined from the first six of the seven initial
shots, will be used as input to the ANISEIS numerical modelling software of the
Edinburgh Anisotropy Project, the output of which will be compared with the physical
modelling results of the CREWES Project. We have some partial results from ANISEIS
which, at present, are based on the stiffnesses determined for a 10-cm cube of Phenolic
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FIG. 3. Variation of qP, qsl, and qS2 phase velocities (solid curves) and group velocities (dashed curves) for a cube of phenolic CE, 
computed by ANISEIS (courtesy of S. Crampin) for the stiffnesses given by Cheadle et al. (1991). A shear-wave point singularity 
is seen at about 45” in the 3-l plane. 
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CE (Cheadle et al., 1991). These are shown in Figure 3, where a point singularity can 
be seen. However, singularities are quite sensitive to variations in stiffnesses, so we 
await numerical results from the sphere before proceeding with comparisons. 

Practical problems will undoubtedly arise in this work. For example, how can 
we compare recorded amplitudes generated by different source transducers (P versus S) 
which may have different piezoelectic responses and probably couple differently to the 
material surface? In fact, we can use the principles of seismic reciprocity, in particular 
negative reciprocity (Knopoff and Gangi, 1959; Brown et al., 1991) to equalize e.g. a 
P--N trace (P source, SH receiver) and an SK-P trace, and so on. 

We also still have the problem of relatively large transducers (compared to 
dominant wavelengths and specimen size) which mean that any one trace is a sort of 
composite record of a rather thick pencil of rays. For traces generated and recorded on a 
sphere, this is not as great a problem as for a cube or slab because the transducer faces 
are everywhere normal to the raypaths for the sphere. For continued work, however, 
we arc looking into methods to reduce the effective transducer sizes, such as: miniature 
transducers, deconvolution of recorded traces (incorporating knowledge of the 
transducer directivity functions or radiation patterns), or more advanced technology 
based on interferometry or pulsed laser methods (e.g. Castagnede et al., 1991). 
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