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ABSTRACT

The amplitude responses of thin beds whose thicknesses are below (1/8)La, where
_._ is the predominant wavelength, are studied. Two analytical expressions for the
amplitude response as a function of the thickness are derived. The first one is based on
the substitution of a sine wave for the input wavelet, and the second one is based directly
on the analytical expression for the Ricker zero-phase wavelet. The numerical results of
these two expressions are compared to the numerical results of several models. It is found
that below (1/8)7_d,the differences between the two expressions are very small, and both
are good approximations, assuming that the limit of good agreement between the

analytical results and the modelling results is about 10%. Above the (1/8)_,_ thickness,
the percentage differences increase rapidly for both expressions, implying that the thin-bed

assumptions in both derivations breaks down rapidly beyond the (1/8)Xa thickness.

INTRODUCTION

One approach to defining a thin bed is the linearity limit of the functional behavior
of the amplitude of the reflected composite wavelet as a function of the thickness of the
bed. By approximating a wavelet peak with the peak of a monochromatic sine wave
whose wavelength is equal to the predominant wavelength of the wavelet, Widess (1973)
derived the following expression:

A d 47tAirb (a)
_d

where A d= the amplitude of the composite wavelet
A, = the mean amplitude of the maximum peak and trough of the input wavelet

r = the magnitude of the reflection coefficients
b = the thin-bed thickness

_-d = the predominant wavelength in the thin bed

The above expression simply says that, for thin beds, the amplitude of the reflection
is approximately proportional to the thickness of the bed and inversely proportional to the
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predominant wavelength. Indirectly, Widess defined a thin bed as a bed whose thickness
is such that the amplitude of a composite reflection obeys the above expression. Koefoed
and de Voogd (1980) considered thin layers from the point of view of the quasi-linear
relation that exists between their thickness and their reflection amplitude to a seismic
signal. They considered that a bed is thin if the amplitude response as a function of
thickness deviates less than 10% from a linear relationship. Using an integral
representation of a wavelet, de Voogd and den Rooijen (1983) derived the following
results for a thin bed:

b(x,t) - r_" a'(x,t) (b)1-r 2

where b(x, t) = the composite wavelet
a'(x, t)= the first derivative of the input wavelet a(x, t) with respect to time

r = the reflection coefficient

z = the 2-way travel time in layer

They concluded that a thin layer is a layer whose composite reflection has the shape
of the first derivative of the wavelet and that its amplitude is proportional to the thickness
of the layer and to a factor depending upon the reflection coefficient of a single interface.
Note that Widess, Koefoed, de Voogd, and den Rooijen only considered vertical plane
waves incident upon two equal-amplitude spikes with opposite polarities. Hence, their
conclusions cannot be considered general.

In the following sections, two analytical expressions for the amplitude behavior of a
thin bed as a function of thickness are derived. The first expression is an extension of
Widess' method, and is based on a sinusoidal approximation. The second expression is
derived directly from the expression of a Ricker zero-phase wavelet. The only
approximation in this expression is the thin-bed assumption. The results from these two
expressions will be discussed and compared. Note that in deriving both equations
transmission loss and internal multiples are ignored. As pointed out by Koefoed and de
Voogd (1980), such effects are negligible as long as the acoustic impedance ratio between
the thin layer and the surrounding rock lies between the bounds of 0.5 and 2, which they
also pointed out is the range of acoustic contrast usually encountered in practice. In our
examples, the acoustic impedance ratio ranges from 0.75 (model 1B) to 1.52 (model 1A).

SINUSOIDAL APPROXIMATION

Consider a thin bed embedded in an infinitely homogeneous medium. Let r_ and r2
be the reflection coefficients of the upper and lower interfaces respectively. Following
Widess' (1973) approach, to the first order of approximation, the central portion ofa
Ricker zero-phase wavelet can be approximated by a sine wave whose wavelength is equal
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to the predominant wavelength of the wavelet. Choosing the centre of the thin bed as the
zero time reference and assuming a Ricker zero-phase wavelet as the input wavelet, the
maximum amplitude of the reflected composite wavelet can be approximated as:

VJTd ] L_, VJTd J

where AN = the maximum amplitude of the sine wave
b = the thickness of the thin bed

V = the P-wave velocity within the thin bed
Td = the predominant period of the input Ricker zero-phase wavelet

Expanding the cosine terms, we have:

r_) sin-- sin
Ar = Ai (r, + r_) cos2T7 cos27tb + Ai (r2 -_,. 2mTd 2_b_d

where _.d = the predominant wavelength of the input wavelet

2rib 2r_b
Now, we make the thin bed approximation. For sufficiently small b, sin-- = and

cos2=b = 1- 2/sin 7_b"_ _ 1- 2/_b _2. Using these approximations, we can write:

2_t
= M 1cos 2rot +M 2 sin (2)

T0 T0

where M, J
. ,2rib

and M_ = Aith - rl) -_d
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For maximum or minimum A_, dA, = 0dt

.'. dA, = 0 = 2_Ai M_ sin 2rot + 27rAi M2 cos2rCt
dt Td T, T, T,

2m _ M stan--
Td M_

T,t
=>t= 2x _MI j

Note that since we are using continuous sine waves to derive the above expression,
there is actually more than one value oft that would give maximum or minimum value of

• nn nrc
Ar. A value oft given by the above expression plus --, i.e. t +--, where n is an integer

and _ is the angular frequency of the sine wave, will lead to either maximum or minimum
value of A,. But since we are interested only in the maximum and minimum value of A,
where t is closest to zero, we will only consider the case where n = 0.

Substituting this expression for t into equation (2), we obtain:

A,= M, cos2=FTdtan-'(M=_l+M s sin2n[ Td tan-'(M:/]
Td L2_ LM,jj T, L2_ LM,)J

t

M_ M 2

=M'4M_+M2 2 +M2_/Mr_-_+M_+M_

!

.'.A, :Ai{ J J
(3)

Equation (3) is the amplitude equation sought. Note that A, has two roots, a
positive root for the reflected composite wavelet peak, and a negative root for the trough.
Since equation (3) is actually derived from the interference of two continuous sine waves
with the same wavelength, the two roots obviously should be identical in magnitude due to
symmetry. Therefore, we need only consider one of the roots. We will consider the
positive root and refer to A, as the absolute maximum amplitude.
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Therefore, equation (3) gives the absolute maximum amplitude response of a thin
bed for the general case. As shown by Widess (1973) and also in the next section, for
equation (3) to be valid, the maximum thickness b is approximately 1/8 of the predominant
wavelength. For r, = -r2, the first term in the expression for A, is zero and the second term
becomes 4nr,bAi/_.d, which is the expression derived by Widess (1973). For r_ = r2, the

second term is zero and the first term becomes 2Air i(1-2n2b _ /_2d), which approaches

a value of 2A_ri,as b approaches zero, as expected. For Ir,l_lr_l,Ar receives contribution

from both terms. Equation (3) also indicates that, except for the case of r2 = -r_, the
absolute maximum amplitude of a composite wavelet reflected from a thin bed is not
linearly proportional to the bed thickness, but rather, the relationship is a complicated
second-ordered polynomial. This implies that in exploration seismic data, calibration of
amplitude for a thin bed reflection to infer the thickness based on a linear relationship will
lead to erroneous results unless r2= -r_.

The fact that equation (3) is derived from using the approximation of a continuous
sine wave leads to an interesting property. For a thin bed represented by two spikes of
equal polarity, numerical results from.equation (3) are close to modelling results one
would obtain regardless whether the input wavelet is zero-phase or 90°-phase. However,
if the spikes are of opposite polarity, equation (3) actually gives values that would result
only from an input 90?-phase wavelet. The reason for this can be explained graphically as
follows.

Consider the case of equal polarity. Figure la shows two identical sine waves
separated by a distance less than 1/8 of its wavelength. Note that a convolution of a sine
wave with two spikes can be obtained by simply summing two sine waves with the proper
polarities and separated by the same distance between the spikes. Figure lb shows the
results of the summing of the two sine curves. The boxed portions of the curves in both
Figures la and lb indicate the corresponding areas before and aider summing. If we
compare these two boxes to the corresponding boxes areas in Figures lc and ld where a
zero-phase input wavelet, whose predominant wavelength is equal to the wavelength of
the sine wave, is used, one could see that they are very similar. Hence, equation (3) is a
good approximation for the equal-polarity case with a zero-phase wavelet input. This will
also be true if the input wavelet is 90°-phase, since the peak region of a Ricker 90°-phase
wavelet has the same shape as that of a zero-phase wavelet.

Figures 2a, 2b, 2c and 2d show similar diagrams for the case of opposite polarity.
It is quite clear from Figure 2a that the portions of the sine curves inside the box are quite
different from that of the zero-phase wavelet in the box in Figure 2c. The much lower
amplitude of the side lobe of the zero-phase wavelet results in this difference. However,
in Figure 2e where a 90° zero-phase wavelet is used, one can see that the portions of the
wavelets in the box resemble that of the sine waves in the box in Figure 2a. Hence, for

opposite polarity, equation (3) gives results that are comparable to an input 90°-phase
wavelet, not an input zero-phase wavelet.
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Sinusoidal Ricker
Approximation Approximation

(a) '", _ '. (c) _,
I

FIG. 1. Sinusoidal and Ricker Approximations for equal polarity.

Sinusoidal Ricker
Approximation Approximation

<_),,,/ ', ,"_<,%/',.\

(e) /X ,"I \ .,-._

FIG. 2. Sinusoidal and Ricker Approximations for opposite polarity.
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Figures 1 and 2 also explain two observations about equation (3). As will be shown
later, the rate of change of the amplitude as a function of thickness in the thickness of
interest is larger for opposite polarity than for equal polarity. The reason is that for
opposite polarity, the maximum amplitude of the reflected composite wavelet comes from
the summation of the sine curves around the halfway point between a peak and a trough
where the gradients of the curves are maximum. On the contrary, for equal polarity the
corresponding maximum amplitude comes from the summation around the peak of the
sine waves where the gradient is around zero, resulting in a slower change in amPlitude as
the thickness varies.

The second observation is that, in Widess' paper (1973), the A_ in equation (3) is
assumed to be the mean of the input wavelet absolute peak and trough amplitudes, instead
of the absolute peak amplitude. However, he did not elaborate on the reason for this
assumption. Figure 2c explains it succinctly. In practice, if we want to use a zero-phase
wavelet in modelling as an input wavelet for the opposite-polarity case, the maximum
amplitude of the reflected composite wavelet will always be lower than those calculated
from equation (3) by a factor dependent on the functional form of the wavelet for reasons
shown in Figure 2c. However, we can use equation (8) which is derived specifically for an
input Picker zero-phase wavelet for the Widess case. We shall discuss this in more detail
in the next section.

Finally, it should be emphasized that a significant attribute of equation (3) is that,
given any two-spikes reflectivity series, it predicts the behavior of the amplitude as a
function of thickness for a thin bed situation, and there is no inherent restriction on the
exact functional form of the input wavelet.

Rieker Zero-Phase Wavelet

For a Picker zero-phase wavelet, whose analytical expression is known, one can
derive amplitude equations similar to equation (3) for the case of r_= -r_ and r t = r2. For
Ir,l_Ir21,because of the complication in the mathematics, one cannot directly derive an
amplitude equation similar to equation (3). However, as will be shown later, one can
indirectly derive a similar equation for this general situation. We shall discuss this in more
detail later.

+

Let us now consider the Widess' case, i.e. equal-magnitude and opposite-polarity
spikes. One can derive an expression similar to equation (3) (with r_ = -r2) by using the
analytical expression for a Picker zero-phase wavelet, which is one of the most commonly
used wavelets in modelling. We will first derive this expression and then compare it to
equation (3). The comparison will shed some light on the validity of the sinusoidal
assumption, at least in the case of a Picker zero-phase wavelet.

In the time domain, a Ricker zero-phase wavelet with the peak at t = 0 is given by:
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X(t) = A, (] - 2x2f_t 2)e-''r'h' (4)

wherefo = the peak frequency and A_= the maximum peak amplitude

Consider two reflection spikes of opposite-polarity and equal amplitude r and
separated by 2At. Choosing the centre between the two spikes as reference zero time, the
convolution of the Ricker zero-phase wavelet with this reflectivity series can be written as:

R(t)= Air[l- 2_fo_ (t- At) 2]e -n'f*_(t-_)_- Air[l- 2n_fo2 (t + At) 2]e -"2f*'(t+_0'

For a thin bed, At is very small. Ignoring terms of second order in At, we have:

R(t)= A,re -_2y*':{[1- 2r_2fo: (t :- 2tAt)]e _2f*_2t_t-[1- 2x2fo2 (t: + 2tAt)]e -_2y*'2tAt}

Expanding the exponential terms within the brackets on the right-hand side and
ignoring terms of second order in At, we obtain:

R(t)= Aire -_'&h' {[l- 2n_f_ (t_- 2tAt)][1+ 2n_f_tAt]- [1- 2n_f_ (t 2 + 2tAt)][1- 2 _fo2tAt]}

Expanding the terms within the brackets and ignoring terms of second order in At,
we have:

R(t) = Aire -"%h_{12n2f_tAt- 8r_4f4t3At}

2 2 -n2f,2t 2
= Air4/_ fo Ate {3t- 21t2fo:t 3} (5)

For maximum or minimum R(t):

_ 2 2 2 2 -n2f,2t _ 2 2 3 -n2f_t 2

dR(t) =0=Air4_ fo At[-2tx foe (3t-2x Jot )+e (3-67t2fo2t2)]dt

Simplifying, we have:

4X4fo4t 4 - 12x2fo2t 2 +3 = 0

.-. t _ = 12r_2f_+ _/144=4f 4 _ 48_4f_

8=4f 4
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fo fo

1

Xfo (6)

Equation (6) shows that there are four roots for t, implying the existence of a total

of four peaks and/or troughs for the reflected composite wavelet. This is in agreement

with the fact that the reflected composite wavelet is a Ricker 90°-phase wavelet and has

two peaks and two troughs, as shown in Figure 2c. Since we are interested in the absolute

maximum amplitude, we will only consider the root that corresponds to a higher-

amplitude peak or trough with a positive t value.

I

"'" t =/32"q_)2 xfol __0.5246Xfo

K
where K = 0.5246

Substituting this t value into equation (5), we get:

2 2 K2 t

R(t) = Air4rC2fo2Ate(-" f; ,,_) _ 3K 2_2f2K 3
I Xfo Xfo

= A i r4 xfo e -K' At(3K - 2K')

= 4 xA irAtfo M (7)

where M = e-z= (3K - 2K') = 0.9759

Note that Atfo = h_fo = b where b is the thickness of the bed, and V is the P-
V _o

wave velocity in the bed. Note also that fo and 7_oare the peak frequency and peak

wavelength respectively. As shown by Kalweit and Wood (1982), they are related to the

predominant frequencyfd and the predominant wavelength Z,dby the following relations:
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fa=l.3fo and _,,=---1 L
1.3 °

Using the above relations, equation (7) can be rewritten as:

R(t) = 4kAirbM_ 0.9759 (rtA/4..._irb"
1.3_,a 1.3 _, _'d

= 0.75(4rtAi rb ")
C ) (8)

Equation (8) gives the absolute maximum amplitude for the reflected composite
wavelet from two reflection spikes of opposite polarity and equal magnitude with a Picker
zero-phase wavelet as an input wavelet. Let us compare equation (8) with Widess'
amplitude expression, i.e. equation (a). In equation (8), on the right-hand side, the term
within the bracket is, in fact, Widess' amplitude expression. Hence, the two expressions
have the same functional form and differ only by a constant. Note that in Widess'
expression, because of the problem explained in Figure 2, & is not the maximum peak
amplitude of the input wavelet that the sine wave approximates, but is that maximum peak
amplitude modified by a constant factor. Comparison to equation (8) indicates that the
constant factor is 0.75 if the input wavelet is a Picker zero-phase wavelet.

Let us now consider the case of two equal-polarity and equal-magnitude reflection
spikes separated by 2At. If we convolve a Picker zero-phase wavelet with this reflectivity
series, choosing the centre of the two spikes as zero reference time, the composite wavelet
can be written as:

R(t)= Air[l- 2_2f2 (t - At) 2 ]e-nlf*_(t-&t)l q- Air[l- 27_=f_(t + At) =]e -_'s*'('÷a')=

where A_= maximum peak amplitude of input wavelet and r = magnitude of the reflection "
spikes.

From symmetry, the maximum peak of the composite wavelet occurs at t = 0.
Hence, ifA r is the maximum amplitude of the peak, we have:

2 2 2 -nlf_&t 1A, = Air(]-2n2fo2At2)e -"9"da`'+Air(1-2n fo At )e

2 2 2 -_lIf_At I
= 2Air(1-ZT_ <At )e

= 2Air(1 - 2_:fo: At2)(1 - ==fo=at =), ignoring terms of 0(V) and higher for small At.
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From the above expression, it is evident that, unlike for the case of equal-magnitude
and opposite-polarity spikes, terms of second order in At cannot be ignored. This is
probably due to the fact that, as mentioned earlier, the rate of change of amplitude as a
function of thickness is much smaller for the equal-polarity spikes than for the opposite-
polarity spikes. Hence, higher order of At is needed for the equal-polarity spikes to
differentiate different amplitudes for small thickness range. Rewriting the expression for
AT, we have:

A, = 2Air[1 - 37t2f2At 2 ], ignoring terms of 0(At4)

=2Air[I-3( _xb ,]2]
l tl.3,) j

(9)
L J

Equation (9) is the expression sought. It gives the maximum peak amplitude for the
composite wavelet resulting from the convolution of a Ricker zero-phase wavelet with a
two-spikes reflectivity series &equal magnitude and equal polarity. It can be rewritten as:

2 2

Ar = 2Air[1-2(7_h`] ]+0.45Air( _xb) (10)
L t ,J J

The first term in the right-hand side of equation (10) is exactly the same as the Ar
given by equation (3) by putting r, = rr Thus, using a sinusoidal, approximation for a
Ricker zero-phase wavelet for the case of equal-magnitude and equal-polarity will

¢,]'introduce an error of a decrease of 0.45A_r nb in the peak amplitude. This error is a

function of the bed thickness. Table 1 showsthe percentageerror between the two
methodsas a function of thicknesscalculatedasfollows:

0.45Air( rob`]2
%error = _.)_dJ x100%

2Air[ 1-2¢=b_:]_.7%)_!
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From Table 1, it is evident that the sinusoidal approximation is a good
approximation for the Ricker zero-phase wavelet for the equal-magnitude and equal-
polarity thin bed if its thickness is less than 1/8 of the predominant wavelength, assuming
one accepts a 10% difference as the limit of acceptable deviation. Below that thickness,
the differences are fairly small. It is interesting to note that the percentage error increases
sharply beyond the (1/8)Z,dthickness.

Table 1 % Error for Sinusoidal Approximation

b / _'d %error

1/20 1.2

1/18 1.5

1/16 1.9

1/14 2.5

1/12 3.6

l/t0 5.5

1/8 10.0

1/6 27.3

Unfortunately, the complicated mathematics involved inhibits the direct derivation
of a simple expression equivalent to equations (8) and (9) for the general case of two

reflection spikes where Iq[_lr21.However, one can derive an expression for the general
case in the following manner. Consider firstly the case of two reflection spikes having
different magnitudes and.are of opposite polarities. We can decompose the two spikes as
follows:

r4 r4

I r; rs f I I , r i <r 2

-rl[ -r31 [= + -rT-'r--r, ,r_ >r= (11)

rI + r2 - r1+ r2
where r3 - and r4 - In other words, the different-magnitude and2 2

opposite-polarity spikes have been decomposed into the sum of an equal-magnitudeand
opposite-polarity term and an equal-magnitudeand equal-polarity terra. Similarly, we can
do the samefor two spikes havingdifferent magnitudeand areof equal polarities:
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r7
I

r_l Ir' =-r_ + rsI Ir8 (12)

-r5 +r6 rs+r6
wherer7 - and r8 - --

2 2

Since convolution is linear, the convolutions of a wavelet with the let,-hand sides of
equations (11) and (12) are equal to the convolutions of the same wavelet with the right-

hand sides. It is then evident that, for the general situation of Ir,[_lql, the amplitude
equation is simply the sum of equations (8) and (9). For example, consider equation (11),
we can write:

1

l[Ao=A i (2r,) 2 1-1.775 +0.752(2r3) 2

!

{ E=A i (-r!+r2) 2 1-1.775 +0"752(r!+r: _._-a .)J (13)

Note that we will use A0 and A, to represent the absolute maximum amplitudes of
the reflected composite wavelets for Ricker approximation and sinusoidal approximation
respectively.

However, compared to equation (3) where the signs associated with the reflection
spikes are embedded, here the signs are explicitly written out to facilitate the
decompositions. In other words, in equation (3), r_ and r2 can be negative or positive
numbers, and in equation (13), r_and q are the magnitudes of the reflection spikes and are
positive numbers. Thus, to be consistent with equation (3), equation (13) should be re-
written as:

1

where r_ and r=have embedded signs.

Similarly, one can show that equation (14) also works for the case represented by
equation (12).
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From the foregoing discussion, equation (3) can now be rewritten as:

1

(15)

J J
where M is a constant to rectify the problem explained in Figures 1 and 2, and its value is
dependent on the functional form of the input wavelet. We have shown that for equal-
polarity spikes, M is 1. For opposite-polarity spikes, M is 1 for a Richer 90°-phase input
wavelet, and is 0.75 if the wavelet is zero-phase.

In the next section, the results from modelling will be plotted and compared with
the results from equations (14) and (15) to determine if they are valid.

Vertical Incidence, Single Layer

In this section, we will compare the results from equations (14) and (15) with the
results from numerical modelling for vertically-incident plane waves. To study the
amplitude response of a thin bed to vertically-incident plane waves, a simple wedge model
(Figure 3) is used. Its geometry is set up so that the trace numbers in the resulting
synthetic seismograms are equal to the thicknesses of the wedge in metres, that is, trace 1

V3, d3

FIG. 3 A Wedge Model

corresponds to a thickness of 1 metre, trace 2 2 metres, etc. Because of the thickness of
interest, the number of traces plotted for each synthetic seismogram will only cover two to

four metres more than the (1/4)_,d thickness. Since different models have different
velocities for the thin beds, the number of traces plotted for various synthetic seismograms
will be different, depending on the models and the peak frequencies of the input wavelets.
Unless specified otherwise, all synthetic seismograms are generated by convolving a 31 Hz
(peak frequency) zero-phase Ricker wavelets with two-spikes reflectivity series, since 31
Hz is a rather common peak frequency on seismic data from Western Canada. Other peak
frequencies will also be used to test the frequency dependency of the equations. A 90°-
phase wavelet will also be used whenever is appropriate. Note that, however, based on
the second moments of wavelets, Berkout (1984) showed that a zero-phase wavelet gives
the maximum vertical resolution compared to other phases. For reasons mentioned
earlier, transmission loss and internal multiples are ignored, and all models are run at 0.1
ms sampling rate. The maximum peak amplitude of any input Ricker wavelet is set at
1000.
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Six different two-terms reflectivity series will be studied:

(a) -r"Lopposite polarity and equal magnitude (model 1A)
(b) -_- opposite polarity and unequal magnitude (model 1B)
(c) _ opposite polarity and unequal magnitude (model 1C)
(d) II equal polarity and equal magnitude (model 1D)
(e) a_l. equal polarity and unequal magnitude (model 1E)
(f) _- equal polarity and unequal magnitude (model 1F)

The densities and velocities used for the various models are listed in Table 2. Note

that for all the six models, the reflection coefficients for the upper interface and lower
interface are referred to as r_ and r2 respectively. They are chosen to reflect the general
situation in the early Cretaceous formations in Southern Alberta. Figures 4a to 4f show
the synthetic seismograms for the six models.

Opposite Polariiy and Equal Magnitude

This case is referred to as model 1A. It represents the situation of a thin bed
embedded in a homogeneous and isotropic medium so thick that there is no interference
effect from the overlying and underlying strata. Although such a bed is rarely encountered
in real geological situations, it is the most studied case in thin-bed interpretation because
of its simplicity. Since r_= -r2 = 0.2072, equations (14) and (15) reduce to:

0 75(47tAirb_ M/4 nA_rb_ respectively.
m0 = . _. _ j where r = Ir,l=lr21and A, = _, _,a J

Recall that .% corresponds to Picker zero-phase wavelet approximation and A
corresponds to sinusoidal approximation as discussed in the last section. For a Picker
input wavelet, M is 1 if it is 90°-phase, and is 0.75 if it is zero-phase. Furthermore,
according to the derivation, M is a constant independent of frequency. To check these
properties of M, model 1A is run six times with six different Picker wavelets, three zero-
phase wavelets at 18 Hz, 31 Hz and 50 Hz peak frequencies, and three 90°-phase wavelets
at the same frequencies. The results are listed in Tables 3a, 3b and 3c, and they are
plotted in Figs. 5a, 5b and 5c.

CREWESResearchReport Volume4 (1992) 17-15



HaioMan Chung and Don C. Lawton
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FIG. 4a Synthetic seismogramfor model 1A_

Trace no.
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0

FIG. 4b Synthetic seismogram for model lB.
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Trace no.
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FIG. 4c Synthetic seismogram for model 1C.
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0

FIG. 4d Synthetic seismogram for model 1D.
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FIG. 4e Synthetic seismogram for model 1E.
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FIG. 4f Synthetic seismogram for model IF.
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Table 2 Lithology, Layer Velocities, Laver Densities and Reflection Coefficients for Six Models

Lithology Modelled Lithology Modelled Lithology Modelled

Model Vl(m/s) d(_/cc) V2(m/s) d(g/cc) V3(m/s) d(_/cc) r, r7

non-porous sand porous sand non-porous sand

1A 4267 2.505 3048 2.303 4267 2.505 -0.2072 0.2072

silt porous sand non-porous sand
1B 3800 2.434 3048 2.303 4267 2.505 -0.1371 0.2072

non-poroussand poroussand siltg

•_ 1C 4267 2.505 3048 2.303 3800 2.434 -0.2072 0.1371

"_ porous sand silt non-porous sand

1D 3048 2.3033560 2.434 4267 2.505 0.1047 0.1047

•_ poroussand shale non-poroussand

1E 3048 2.303 3353 2.359 4267 2.505 0.0596 0.1494

poroussand silt non-poroussand

IF 3048 2.303 ' 3800 2.434 4267 2.505 0.1371 0.0722
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Note that in both Table 3 and Fig. 4, the Ricker and sinusoidal approximations

are only listed and plotted to a thickness slightly beyond the (1/8)_,d value. This is
because these approximations are not expected to be valid beyond this thickness, if
one accepts a 10% difference as the limit of good agreement between these
approximations and the modelling data, as mentioned in the last section. As Table 3
indicates, the percentage differences between the modelling data and the sinusoidal and
Ricker approximations are less than 10% for thicknesses less than the (1/8)2_dvalue.
For thicknesses below (1/16)_,d, the fluctuations in the percentage differences reflect
somewhat the non-systematic round-off errors resulting from using a discrete sampling
rate in modelling. As the thickness increases to beyond the (1/16)Xd value, the
percentage difference begins to increase steadily, reflecting the fact that bed is getting
thicker, and the thin-bed assumption is slowly being violated. The modelling values
are listed and plotted to a thickness slightly beyond the (1/4)_,d value, since our
thickness of interest is up to (1/4)2_dvalue. As shown in Figs. 5a, 5b and 5c, tuning
occurs at about (1/4)2_d thickness, which is a well-known effect and needs no further
comment.

In Table 3, the amplitude values for the Ricker approximation are obtained by
multiplying the corresponding" amplitudes for sinusoldal approximation by 0.75. The
results agree well with the modelling results with Ricker zero-phase wavelet as input
for up to about (1/8)Xdthickness for all three frequencies. This implies that the Ricker
zero-phase approximation is correct and that M is indeed independent of frequencies.
However, Fig. 4 shows an interesting property of the Ricker zero-phase
approximation. Notice that the modelling curve with zero-phase wavelet input
deviates from the Ricker zero-phase approximation faster than that with the 90°-phase
wavelet input from the sinusoidal approximation for all three frequencies. The reason
is probably due to ignoring second and higher order terms in At when the expression
A_ is derived for the case of r2 = -r_. As explained in the last section, second order
term in At is actually needed if the summing of wavelets involves the region around the
peak or trough area of the wavelet. Fig. 2c clearly shows that the summing of a
Ricker zero-phase wavelet with its reverse separated by At would involve the side
trough of the wavelet.

Based on the results shown in Table 3 and Fig. 5, one can conclude that both
the sinusoidal and Ricker zero-phase approximation are good approximations for beds

that are below the (1/8)Xdthickness , and are independent of frequencies. In practice,
the existence of a constant M in the sinusoidal approximation implies that, even if
there is a geological situation which can be represented by model 1A, one cannot
calibrate the thickness according to the amplitudes observed on real seismic data
unless the wavelet is known, or the data ties with at least one well for the target
formation. If there is no well tie, one may try to extract a wavelet from the data; if it
approximates a Picker zero-phase wavelet, then M is roughly 0.75. If the wavelet
does not approximate a Picker zero-phase wavelet, one might be able to estimate M
by modelling with the extracted wavelet as an input wavelet.
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Table 3a Comparison of Modelling Data with Kicker and Sinusoidal Approximations for

Model 1A at 18 Hz Peak Frequency (_,a= 130.26 m)

Absolute Maximum Amplitude (Input = 1000)
Zero-Phase Input Wavelet 90°-Phase Input Wavelet

Thickness (t/_,,)xl0-_ Picker Modelling Sinusoidal Modelling
(m) (R) (M) R-Mxl00,/_ (S) (M) S-MxI00_

R S

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.77 15.01 16.00 -6.60 19.99 19.92 0.35
3 2.30 45.03 43.28 3.89 59.97 59.56 0.68
5 3.83 75.05 74.60 0.60 99.94 100.09 -0.15
7 5.37 105.07 102.85 2.11 139.92 138.10 1.30
9 6.91 135.09 130.01 3.76 179.90 181.53 -0.91
11 8.44 165.11 155.80 5.64 219.88 217.54 1.06
13 9.98 195.13 179.96 7.77 259.86 251.26 3.31
15 11.52 225.15 203.90 9.44 299.83 284.66 5.06
17 13.05 255.17 222.52 12.80 339.81 310.62 8.59
19 14.59 241.87 337.53
21 16.12 257.41 359.08
23 17.66 270.53 377.14
25 19.19 281.17 391.67
27 20.73 289.89 403.29 _-
29 22.26 295.11 409.94
31 23.80 298.50 413.74
33 25.33, 299.67 414.02
35 26.87 298.75 411.24
37 28.40 295.67 404.66
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Table 3b Comparison of Modelling Data with Kicker and Sinusoidal Approximations for

Model 1A at 31 Hz Peak Frequency (_._= 75.63 m)

Absolute Maximum Amplitude (Input = 1000)

Zero-Phase Input Wavelet 90°-Phase Input Wavelet

Thickness (t/_,)xl0-' Ricker Modelling Sinusoidal Modelling
(m) (R.) (M) R-Mxl0tY/, (S) (M) S-MxI00_A

R S

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 1.32 25.82 27.53 -6.62 34.43 35.66 -3.57

3 3.97 77.46 73.98 4.49 103.28 103.40 -0.12

5 6.61 129.11 125.57 2.74 172.14 175.50 -1.95

7 9.26 180.74 169.43 6.26 240.99 236.80 1.74

9 11.90 232.39 208.11 ' 10.40 309.85 290.76 6.16

11 14.54 240.58 336.00

13 17.19 266.16 371.34

15 19.83 285.57 397.72

17 22.48 - , 295.51 410.48

19 25.12 298.82 414.15

21 27.77 297.06 407.41

23 30.41 289.38 391.81

Table 3c Comparison of Modelling Data with Kicker and Sinusoidal Approximations for

Model IA at 50 Hz Peak Frequency (La = 46.89 m)

Absolute Maximum Amplitude (Input = 1000)

Zero-Phase Input Wavelet 90°-Phase Input Wavelet

Thickness (t/;_,)xl0-_ Ricker Modelling Sinusoidal Modelling
(m) (R) (M) R-Mx100,/, (S) (M) S-MxlO0_A

R S

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 2.13 41.65 44.29 -6.34 55.53 57.50 -3.55

3 6.40 124.94 117.16 6.22 166.59 163.74 1.71

5 10.67 208.24 191.62 7.98 277.65 267.77 3.56

7 14.93 245.40 342.70

9 19.19 281.08 391.69

11 23.46 297.93 413.23

13 27.72 297.44 408.09

15 31.99 282.08 377.05
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FIG. 5a The amplitude response for model 1A with Kicker 18 Hz input wavelets whose
maximum amplitudes is 1000.
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FIG. 5b The amplitude response for model 1A with Kicker 31 Hz input wavelets whose
maximum amplitudes is 1000.
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FIG. 5c The amplitude response for model 1A with Ricker 50 Hz input wavelets whose
maximum amplitudes is 1000.

Equal Polarity and Equal Magnitude

This case is referred to as model 1D. It represents the situation of a thin bed
overlain by a lower-velocity half-space and underlain by a higher-velocity half-space and
with the two reflection coefficients having the same magnitude. As with model 1A, such a
bed is also rarely encountered in real geological situations. However, the study of it helps
to understand some subtle aspects of thin-bed tuning.

Since r_ = r2, equations (2.14) and (2.15) reduce to A o = 2A_r 1-1.775

and A r = 2A_r 1-2 where r = q = r_. These two simplified expressions differ

only in one of the constants within the bracket, and the resulting difference between Ao
and A, as a function of b is rather small, as shown in Table 1. To study these
approximations, model 1D is run with three different Ricker zero-phase wavelets at 18 Hz,
31 Hz and 50 Hz peak frequencies. Note that for the amplitude study of model 1D, a

Ricker zero-phase wavelet gives the same results as a 90°-phase wavelet, since the
maximum amplitudes resulting from summing both wavelets come from similar regions
around the peaks of both wavelets.
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Table 4a Comparison of Modelling Data with Picker and Sinusoidal Approximations for

Model 1D at 18 Hz Peak Frequency (_,a= 152.14 m)

Absolute Maximum Amplitude (Input = 1000

Thickness (t/_,,)xl0-, Modelling Ricker Sinusoidal
(m) (M) (R) R-M×I00% (S) S-MxI00%M M

0 0.00 209.40 209.40" 0.00 209.40 0.00
1 0.66 209.22 209.24 0.01 209.22 0.00
3 1.97 207.95 207.97 0.01 204.79 -0.01
5 3.29 205.49 205.44 -0.02 204.94 -0.27
7 4.60 201.45 201.63 -0.01 200.65 -0.40
9 5.92 197.06 196.56 -0.25 194.94 -1.09
11 7.23 190.59 190.22 -0.19 187.79 -1.49
13 8.54 183.57 182.62 -0.52 179.22 -2.43
15 9.86 175.59 173.74 -1.06 169.22 -3.76
17 11.17 165.87 163.60 -1.39 157.79 -5.12
19 12.49 156.11 152.19 -2.58 144.94 -7.71
21 13.80 145.64 139.51 -4.39 130.65 -11.47
23 15.12 134.52 125.56 -7.14
25 16.43 121.85 110.35 -10.42
27 17.75 110.89
29 19.06 97.40

31 20.38 83.66
33 21.69 72.12
35 23.01 62.28
37 24.32 58.67
39 25.63 58.03
41 26.95 59.48
43 28.26 61.96
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Table 4b Comparison of Modelling Data with Picker and Sinusoidal Approximations for

Model ID at 31 Hz Peak Frequency (_,_= 88.34 m)

Absolute Maximum Amplitude (Input = 1000

Thickness (t/;%)x10-2 Modelling Picker Sinusoidal
(m) (M) (R) a- Mxl00*/* (S) S-MxI00°/oM M

0 0.00 209.40 209.40 0.00 209.40 -0.00
1 1.13 208.87 208.93 0.03 208.87 0.00
3 3.40 205.11 205.17 0.03 204.63 -0.23
5 5.66 197.90 197.65 -0.13 196.16 -0.89
7 7.92 186.31 186.37 -0.02 183.45 -1.56
9 10.19 173.95 171.33 -1.53 166.50 -4.47
11 12.45 156.31 152.52 -2.48 145.31 -7.57
13 14.72 137.90 129.96 -6.11 119.89 -15.02
15 16.98 117.87 103.64 -13.73
17 19.24 94.74
19 21.51 72.95
21 23.77 59.78
23 26.04 58.22
25 28.30 62.17

Table 4c Comparison of Modelling Data with Picker and Sinusoidal Approximations for

Model 1D at 50 Hz Peak Frequency (_ = 54.77 m)

Absolute Maximum Amplitude (Input = 1000

Thickness (t/;%)x10-2 Modelling Picker R- M Sinusoidal S-M
(m) (M) (R) M xlOO% (S) M xlOO*_
0 0.00 209.40 209.40 0.00 209.40 0.00
1 1.83 208.01 208.22 0.10 208.02 0.00
3 5.48 198.33 198.79 0.23 197.00 -0.68
5 9.13 180.22 179.91 -0.17 174.95 -3.01
7 12.78 152.27 151.61 -0.44 141.88 -7.32
9 16.43 124.12 113.87 -9.00 97.79 -26.92
11 20.08 86.86 66.69
13 23.74 59.91
15 27.39 59.77
17 31.04 68.98
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FIG. 6a The amplituderesponse for model lb with a Ricker 18 Hz input wavelet whose
maximum amplitude is 1000.
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FIG. 6b The amplitude response for model 1D with a Ricker 31 Hz input wavelet whose
maximum amplitude is 1000.

CREWES Research Report Volume 4 (1992) 17-27



Hal-ManChungand Don C. Lawton

Absolute Mexlmum Amplitude
500

400

300

2oo100
Modoillng

0 _ r i
0 I0 2O 3O 40

(tl_. ,) x 10""

FIG. 6c The amplitude response for model 1D with a Ricker 50 Hz input wavelet whose
maximum amplitude is 1000.

In Tables 4a, 4b and 4c, the modelling results are listed together with the results
from the two approximations. They are also plotted in Figures 6a, 6b and 6c. Note that
both the sinusoidal and Ricker approximations agree very well with the modelling results,
as indicated by both the error calculations in Table 4 and Figure 6, for all three input
wavelets. This implies, that the two expressions for A0 and A, are independent of
frequencies. Note that the modelling results agree better with the Ricker approximation
than with the sinusoidal approximation. This is to be expected since the input wavelets for
the models are all zero-phase Kicker wavelets. However, the differences are very small.
At (1/8)Xd thickness, both approximations deviate much less than 10% from the modelling
results. In fact, the Ricker approximation does not exceed 10% error until the thickness is
roughly (0.16)X d. At about (1/4)k d thickness, tuning is also observed. In this case, it is a
minimum, and the wavelet basically exhibits a fiat spot at this thickness (trace 20, Figure
4d). Note that as the thickness increases further, the wavelet splits into two wavelets.
Beyond this point if we measure the amplitude along the same time line along which the
maximum is measured before the fiat spot occurs, there is actually no tuning, i.e. a trough
starts to occur along that time line. The amplitude increase for thicknesses larger than
(1/4)_,d is actually measured in one of two splitted wavelets.

One can conclude that for situations represented by model 1D, both the Ricker
approximation and the sinusoidal approximations are good approximations for the
amplitude response of a thin bed as a function of its thickness. If the input wavelet is
indeed a Ricker wavelet, the Picker approximation gives better results. In reality, one
seldom knows the exact input wavelet, and the sinusoidal approximation may be used to
obtain some reasonable results.
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Opposite Polarity and Unequal Magnitude

This case can be subdivided into two cases and are referred to as models 1B and

1C. They both represent the situation of a thin bed overlain and underlain by higher-
velocity half-spaces whose velocities are different. They are similar to model 1A except
that their two reflection coefficients have different magnitudes. For model 1B, r_ =
-0.1371 and r2= 0.2272; for model 1C, r_= -0.2072 and r_= 0.1371. While model 1A is
the most studied thin-layered situation, models 1B and 1C probably represent more
common geological situations. However, in terms of amplitude and frequency analyses,
models 1B and 1C are equivalent models. Mathematically, one can interchange r_and r2in
equations (14) and (15) without affecting the results. Since Ir,Iand Ir,Iof model 1B are
equal to Jr21and Ir,I of model 1C respectively, they are identical in the applications of
equations (14) and (15). In actual modelling, they are also equivalent for amplitude and
frequency studies. The reason is as follows: Model 1B can be represented symbolically as

I
i . As shown earlier, it can be decomposed as the sum of an opposite-polarity and

equal-magnitude term and an equal-polarity and equal-magnitude term:

I r2 3_ r3-r 1[ _- -r -4- r4 I [r4

__ 1"2 - r 1
where r3- r2 + rl and r4--2 2

Similarly, model 1C can be decomposed as:

Lr! I r_

-rT = -r,I + -rT-l--r,

rx + r 2 r2 - r 1
where r5=-- and r6--2 2

Hence, r3 = r5and r4= r6. The only difference is that the equal polarity terms for the
two models are of opposite polarities. The convolution of a zero-phase wavelet with the
opposite polarity terms in both models give a 90°-phase wavelet which is anti-symmetric
about t = 0, taking t = 0.to be at the centre between the two reflection spikes. For model
1B, the equal polarity term gives a normal polarity zero-phase wavelet to be added onto
the anti-symmetry 90°-phase wavelet; for model 1C, a reverse polarity zero-phase wavelet
is added. The result is that, if one performs a polarity reversal of the reflected composite
wavelet of model 1B, it becomes the mirror image of model 1C about t = 0. In fact, if we
perform a polarity reversal directly on the reflection spikes of model 1B, they become
mirror image of the reflection spikes of model 1C. Note that the argument also holds for

an input 90°-phase wavelet. Since we are here only interested in the absolute maximum
amplitude, the two models will give identical results. For this reason, it is sufficient to run
only one of the models for the amplitude study. Model 1B is arbitrarily chosen.
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Table 5 Comparison of Modelling Data with Ricker and Sinusoidal Approximation for

Model 1B at 31 I-IzPeak Frequency (_a = 75.63 m)

Absolute Maximum Amplitude (Input = 1000)

Zero-Phase Input Wavelet 90°-Phase Input Wavelet

Thickness (t/Xd)xl 0_ Picker Modelling Sinusoidal Modelling
(m) (R) (M) R-MxI00 (S) (M) S-Mxl00

M M

0 0.00 70.10 70.10 0.00 70.10 70.10 0.00

1 1.32 73.10 75.45 -3.21 75.49 76.16 -0.89
3 3.97 93.74 102.63 -9.48 109.44 111.82 -2.17
5 6.61 125.28 135.62 -8.25 156.71 158.30 -1.01
7 9.26 161.56 166.45 -3.03 208.53 201.06 3.58
9 11.90 200.14 198.39 -0.87 262.34 246.39 6.08
11 14.54 240.07 223.31 -6.98 317.28 281.95 11.11
13 17.19 242.93 310.00
15 19.83 257.75 330.99
17 22.48 265.67 341.68
19 25.12 268.36 344.07
21 27.77 '- 266.76 339.38
23 30.41 26().98 326.37
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FIG. 7 The amplitude response for model 1B with Picker 31 Hz input wavelets whose
maximum amplitudes is 1000.
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Table 5 lists the results of equations (14) and (15) alongside the modelling results.
It shows that the percentage error between the Ricker approximation and the zero-phase
modelling results are consistently larger than the percentage error between the sinusoidal
approximation and the 90°-phase modelling results for thicknesses below the (1/16)Xd
value. As in model 1A, this is probably due to ignoring 0(At_)term in the derivation of the
opposite polarity term in equation (14), when, in fact, the modelling involves the input
wavelet trough area which requires terms of 0(At _) to describe its effects. However, for
both approximations, the percentage errors do not exceed 10% until the thickness exceeds
roughtly the (1/8)L d value. The results are also plotted in Figure 7. Tuning occurs at
(1/4)_,d thickness. This is to be expected since model 1B can be expressed as a linear
supposition of model 1A and model 1D. It is interesting to note that, although the Picker
approximation deviates from the modelling results more than the sinusoidal approximation
does for small thicknesses, it agrees with the modelling results for larger thicknesses than
that of the sinusoidal approximation. This implies that the thin-bed assumption is a more
stringent assumption for the sinusoidal approximation than it is for the Kicker
approximation.

Equal Polarity and Unequal Magnitude

This case can also be subdivided into two cases and are referred to as model 1E and

IF. They both represent the situation of a thin bed overlain by a lower-velocity half-space
and underlain by a higher-velocity half-space. They are similar to model 1D except that
their two reflection coefficients have different magnitudes. For model 1E, rj = 0.0596 and

r2= 0.1494, and can be symbolically be represented as I I For model IF, r_ = 0.1371

and r2= 0.0722, and can be symbolically be represented as [ I . As for models 1B and
1C, they can also be decomposed into an opposite-polarity and equal-magnitude term and
an equal-polarity and equal-magnitude term. For example, both models 1E and IF can be
decomposed as follows:

r3

r,j Ir2= ÷ r, I Ir,

r2 - r1 r2 + rI

wherer 3-- andr 4=2 2

Unlike models IB and 1C, r_ and r2 of model 1E are not equal to r2 and r, of model
1F respectively. However, the possible decompositions of both of them into two similar
terms imply that the investigation of the amplitude properties of one of them is sufficiently
representative of any two reflection spikes of equal polarity and different magnitudes.
Model 1E is arbitrarily chosen for the study.

Table 6 and Figure 7 show the modelling results for model 1E alongside the results
for the two approximations. The two approximations give practically identical results,
which agree very well with the modelling results for thicknesses up to and slightly beyond

the (1/8)7_d value. Note that at a thickness of (1.3/10)_,d, the percentage errors between
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the approximations and the modelling results are only roughly 5%. Note also that the
results of models 1D and 1E, and hence any two reflection spikes of equal polarity, can be
better approximated with the two approximations than the opposite-polarity cases. The
reason is because, for equal-polarity cases, the contribution from the opposite-polarity
term in equations (14) and (15) are very small, and hence the problem of neglecting 0(At2)
as mentioned several times earlier is minimal. Tuning occurs also at (1/4)_,d thickness,
which is a direct consequence of the fact that, as shown by model 1D, the equal-polarity
term tunes at (1/4)_,a, and the contribution from the opposite-polarity term is minimal,
though it also tunes as a maximum at (1/4)L dthickness.

Table 6 Comparison of Modelling Data with Ricker and Sinusoidal Approximations for

Model 1E at 31 Hz Peak Frequency (_,__= 83.20 m)

Absolute Maximum Amplitude (Input = 1000

Thickness (t/_,,)xl0-_ Modelling Kicker Sinusoidal
(m) (M) (R) R- Mxl00% (S) S-Mxl00%M M

0 0.00 209.00 209.00 0.00 209.00 0.00
1 1.20 208.59 208.53 -0.03 208.51 -0.04
3 3.61 205.14 204.81 -0.16 204.65 -0.24
5 6.01 198.42 197.42 -0.51 197.04 -0.70
7 8.41 188.82 186.51 -1.24 185.96 -1.54
9 10.82 177.99 172.35 -3.27 171.92 -3.53
11 13.22 163.67 155.42 -5.31 155.89 -4.99
13 15.63 151.33
15 18.03 139.15
17 20.43 129.29
19 22.84 124.51
21 25.24 122.79
23 27.64 123.80
25 30.04 126.48
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FIG. 8 The amplitude response for model 1E with a Kicker 31 I-Izinput wavelet whose

maximum amplitude is 1000.

DISCUSSION

From our analysis, several conclusions can be drawn. The first conclusion is that
the opposite-polarity and equal-magnitude case is a singular case in that it is the only case
where the amplitude response as a function of thickness is a linear function under the thin-
bed assumption. All other cases are complex second-ordered polynomials. The second
conclusion is that the sinusoidal approximation is a reasonable approximation for the
Ricker zero-phase wavelet, and an excellent approximation for the Kicker 90°-phase
wavelet. This is a significant point, since in real data, we do not know the exact wavelet.
But if the sinusoidal approximation is a good approximation for the Kicker'wavelets, it is
likely a good approximation for any zero-phase and/or 90°-phase looking wavelet. The
third conculsion is that for amplitude study, a 90°-phase wavelet input may be preferable
to a zero-phase wavelet input due to the problem of incongruous wavelet mixing as
explained in fig. 2. Consequently, the amplitude response as a function of the bed
thickness has a higher gradient for a 90°-phase input wavelet than that for a zero-phase
input wavelet. Hence, amplitude changes as a function of the bed thickness would be
more observable on data with a 90°-phase wavelet input than that with a zero-phase
wavelet input for the same range of thickness.
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Equations (14) and (15) can be used in forward modelling to deduce the lithology of a thin
layer. For example, the velocity of the thin layer can be varied in these equations until the
corresponding curves agree with the observed results on the real data. They can also be
used to calibrate real data in development situations where the zero limit of the reservoir
rock is needed to be mapped from seismic data. At present, using the same approach, we
are studying the properties of two thin layers. It will be interesting to see how the results
differ from that of a single layer.
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