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ABSTRACT

An explosive point-source in a transversely isotropic medium is defined here
using the boundary conditions at the level of the source satisfied by the displacement-
stress vector. These boundary conditions are equivalent to a pressure pulse in an
isotropic medium. In a transversely isotropic medium the defined source generates
both quasi P- and quasi S-waves.

INTRODUCTION

One of the basic elements in calculating the response of any structure to a
seismic disturbance is the way the disturbance is represented as a source of elastic
waves. The starting point is usually the physical picture related to our intuition and
leading to a convenient mathematical formulation. Thus, when defining an explosive
point-source in an isotropic medium, it is obvious physically that a pressure field is
generated at the source, acting equally in all directions. Hence, the generated motion
must be spherically symmetrical, the actual mechanism by which the motion is created
consisting of bringing into the system, at the source, additional matter that pushes in all
directions the matter already in the system; each particle will move adjacent particles
located further away from the source so that a wave is generated, the particle motion at
every point being normal to the spherical wavefront and starting when the particle is
reached by this wave.

We find therefore that in an isotropic medium, an explosive point-source
generates a P-wave which is spherically symmetric around the source. This physical
picture is translated into a mathematical form by looking for solutions of the momentum
equations that have spherical symmetry and are P-waves. As it is known (Love, 1944;
Ewing et al., 1957), the displacement associated with such motion S "derives" from a

potential O,

g=VO (1)

the potential being a solution of the wave equation in one space dimension. The
mathematical form of the potential and all the derived quantities like displacement or
stress components is a direct consequence of the desired physical picture, the main
aspect of it being the spherical symmetry.
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For a non-isotropic medium, however, there cannot be a spherical symmetric
solution and therefore it seems that it does not make much sense to talk about an
explosion source in such a medium! However, as it has been shown (Abramovici,
1987), an explosive source in medium that is inhomogeneous in the vertical direction,
is equivalent to a set of four boundary conditions at the level of the source, satisfied by
the components of the displacement-stress vector: two of the components are
continuous and two have jumps that depend upon the strength of the source and its
time-variation. It is not difficult to understand these conditions on an intuitive basis and
they can be taken as defining an explosion source. This definition works also for a
transversely isotropic medium, since in such a medium which is vertically
inhomogeneous, the cylindrical symmetry is preserved.

In the following sections we show how this formalism works and what are the
components of the displacement-stress vector expressed as double integrals over
wavenumber and frequency. The integrands are combinations of exponentials in the
vertical variable z with coefficients that lead in the limit to those in an isotropic medium
and satisfy a compatibility condition.

In the last section we show some seismograms based on the double integral
representation for some transversely isotropic materials, illustrating the behavior of an
explosive source in such media.

THE DOUBLE INTEGRAL SOLUTION

As mentioned, the potential qbsolves the P-wave equation,

V2_ 1 ___zqb = 0

a2 _ t2 (2)

V2 being the Laplacian and c¢the velocity of the P-waves:

_ A+2/_
(3)

It is known that the solutions of the above wave equation that depend only upon the
distance R to the source, located at the origin are of the form

_=f(t-R/o_)R
(4)

with R = x2qt_-_-y2 + z2 . The function f must satisfy some regularity conditions in

order to allow • to satisfy the wave equation, e.g. must be continuous and have first
and second order derivatives. Moreover, this function must represent the source
defined above so that we must connect it with the above physical definition.
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Considering a small sphere of radius R centered at the source, the additional

matter brought by the source to this sphere will be a spherical shell of volume 4]-d_2SR
with SR the displacement in the radial direction. Therefore, denoting by V the increase
in volume of matter at the source, due to the activity of this source, we find the
following relation:

V =/_irn0 ( 4_ R2 SR )
(5)

d_
and since SR = _-_ ,

V = _i__m0( 4reR2 _R_ ) .
(6)

Using the above expression for O, we have

20 f'(t-R/o 0 f(t-R/lx)
fir = tx R R2

(7)

wheref' stands for the derivative off with respect to its whole argument. On the other
hand, V is a given function of time, e.g. of the form

v = Vog (t)
(8)

where Vo is a dimensional constant, e.g. the volume of matter generated at the source in
one second. Thus, we have

Vog(t)=_04_( Rf'(t-Rl_)a f(t-RIcO)"
(9)

Asf' must be continuous due to the assumption thatf" exists, we find from this
relation an expression forf(t) :

f (t) =-_ g (t)
(io)

with g(t) representing the time variation of the source. Using this expression, we find

the corresponding potential • :
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V° g(t-R[oO_- 4zcR
(11)

Representing the shifted time function g(t - R / _) as a Fourier integral

g(t-R/oQ=l Re fo" G(o9)ei°J(t-R/a)do9
(12)

where G(og) is the Fourier transform ofg(t) assumed causal,

G(Og)= f0" g(t) e-iWtdt
(13)

we f'md the following representation for the potential • :

?_ _" eiW(t-R/eO d- Re G(o9) R o)
(14)

Using now the well known Sommerfeld integral (Ewing et al., 1957)

e-i_RR - J"0 e-gPlZlkj°(kr)dkKp (15)

where

_/-fi-_-_o_
Kp = V '_ - _ (16)

we find f'mally the representation of alPas a double integral:

4_fo" fo"e-KAzlJ°(kr)kdk_=- Re G(og) ei°Jtdo9 Kp
(17)
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THE BOUNDARY CONDITIONS AT THE SOURCE LEVEL

All the components of the displacement-stress vector are obtained from the

potential qb through well known relations in cylindrical coordinates (Love, 1944) :

s _dO, s _dOz--if7 r--'gT'
(18)

zz =lz( bsr as, ] as z .-5-7+-3-7-j, _zz= 2/_-ff7 + ;tAk

(19)
with

S r _ S z S r

A=-5-T +-E-E+ 7
(20)

where Sz, Sr are the vertical and radial displacements and Zzz, "Ezr,the vertical and radial
stresses on a surface having the normal in the vertical direction. Applying these

relations to the double integral representing #Pand interchanging the derivatives with
respect to z and r with the integral signs, we find double integral representations for all
the components of the displacement-stress vector, of the form:

s==Refo" G((o) eiC°t d(o fo" kwJo(kr)dk
(21)

fO _ fo _ *
sr = Re G(o_) e i oJtd to q Jo(kr) d k

(22)

Zzz=Re fo" G(o))eit°t dog fo" k TwJo(kr)dk
(23)

fo _ fo _
"rzr= Re G(w) e i o_td to TqJo(kr) d k

(24)

where w, q, Tw, Tq are certain functions of z obtained by the procedure described
above.

Taking the difference between the expression for z > 0, i.e. above the source
and z < 0, i.e. below the source, and making z tend to zero, we find the boundary
conditions at the source level, characterizing this type of source:
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}_mo[ (sz)z>o- (Sz),<o] = 2-_ Re f o" O(o)) e i m' d m1" kJo(kr)d k

(25)

)Lmo[(S4>o-(s,),<o]=o
(26)

,_L%[(,,J,>o-(,=),<o]=o
(27)

L . ,_0 N '
Vo I-t " , wt d o) k Jo(kr) d klimo[ (rzr)z>0- (z,,), <0] = -'_- Re G(w)e

(28)

These conditions are usually taken into account not in the "integral" form, as
they are presented here, but in their "local" form, i.e. as conditions for the integrands
w, q, Tw and Tq:

)_o[Wz>o_Wz<o]= Vo
2Jr2 (29)

limo[ qz>o-qz<o ]=O
(30)

lim0 [ (Tw)z>0- (Tw)z<0]= 0
(31)

_Lmo[Fq),>o-F,,),<o]=Y_ _,.
(32)

AN EXPLOSIVE SOURCE IN A TRANSVERSELY ISOTROPIC
MEDIUM

For a transversely isotropic medium, the momentum equations are, in
cylindrical coordinates, in terms of the "local" z-dependent functions, w, q, Tw and Tq :
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0 Fk 1

zlWl qq = -k 0 0

Tw - p (o2 0 0 k (33)

.Tq 0 ._ Fk 0 Tq

where

(34)

and A, C, F and L are, together with another quantity denoted usually N, the five
elastic parameters characterizing the transversely isotropic medium.

In a homogeneous medium there are two upgoing and two downgoing

exponential solutions of the form e _z, where r/satisfies the compatibility condition:

C L rl4-(-pa,'2( C +L )+k2[ C A-F( F + 2L )I} rl2

+( k2 L-po)2 )( kZ A-po) 2) =0 .

(35)

The roots of this equation + r/p and + qs tend, respectively, to

oP /'-k2 w20_2 ' t2
(36)

when the medium tends to an isotropic one.

The corresponding displacement-stress vector is given by:

wli 1q 1 P(-°2+Crl 2-Lk2

r_, = F-+-L F(_p(.02 + Lk2)+ LC rl2 enz

Tq L ( p (.02+ F k2 + C rl2 ) rl (37)

Taking linear combinations of such solutions above and below the source, we
get a fourth-order inhomogeneous system of equations, corresponding to the boundary
conditions at the level of the source shown in the previous section. We find solving
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this algebraic system that both coefficients of the solutions involving exponentials

e± n_,z and e ± ns z are different from zero, so that the considered explosive source
generates both quasi P-wave and quasi S-wave.

SYNTHETIC SEISMOGRAMS

Using the described double integrals, we calculated seismograms for several
transversely isotropic structures, the characteristics of which are given below. These
materials have been used previously for a vertical point force with similar results
(White, 1982), the calculations being based on the use of potentials.

Table 1 : The elastic parameters of four transversely isotropic materials are in units of

dynes/cm 3, multiplied by 1010 and the density is in gm/cm 3 (taken from White, 1982).

parameters A C F L P

models

Pierre-shale 10.00 9.20 6.80 1.30 2.00

Austin-chalk 22.00 14.00 12.00 2.40 2.20

Gypsum-soil 28.40 8.50 4.30 1.50 2.35

Plexiglas-aluminum 51.80 21.40 13.00 3.65 1.95

Figure 1 shows the source-receiver locations while Figure 2 shows the
seismograms calculated for a homogeneous space made of Pierre shale, for a receiver
located at a distance of 500m from the source, at different angles. The top
seismograms show the vertical and horizontal components, whereas the bottom ones
the radial and transverse components of motion. All we can see are a strong quasi P-
wave arriving earlier and a weak quasi S-wave arriving later. On the seismograms for
the radial component, the S arrival is almost inexistent. We can find the explanation of
the relatively strong amplitude of the P-arrival versus the S-arrival by analyzing the
reflectivity for this type of structure which is not very far from an isotropic one, for
which the S-wave will be inexistent as it is not generated by the source.

On the next set of seismograms shown on Figure 3, the picture is similar, but
the S-arrival is more pronounced, as the structure is less similar to an isotropic one.
However, the picture is completely different on Figures 4 and 5 corresponding to
structures presenting a much stronger anisotropy. Here there is an additional arrival at
a later time. The explanation for this new arrival as well as the theoretical determination
of the arrival times of the quasi-P and quasi-S phases was given by White (1982) based
on the asymptotic approximation of the double integrals giving the seismic field. The
essential ingredient of this calculation is the compatibility equation described
previously, that can be used to obtain the phase velocity as a function of the phase
angle. The magnitude of the phase velocities is, as usual, the ratio between frequency
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and wavenumber, og/k. As it is known, the energy of the wavefield travels at a

velocity equal not to the phase velocity, but to the corresponding group velocity, the
direction of travel for a group being different from that dictated by the phase velocity
(Berryman, 1979).

On Figure 6 we show the phase velocities (dashed curves) and the group
velocities (solid curves) for the quasi-P and quasi-S as function of phase or group
angle, calculated for the materials in Table 1. As we can see, for the weakly anisotropic
materials, there are no cusps on the group velocity curves like those for the strongly
anisotropic materials. Moreover, even for a not so strongly isotropic material like
Austin-chalk, the group velocity curve does not coincide with that of the phase velocity.
Plotting the travel time curves by broken lines based on the group velocities, we find
agreement with the arrival times on the numerical seismograms represented in Figures
2-5. Moreover, since the curves presenting cusps correspond to the quasi-S waves, we
conclude that the late arrivals are of quasi-S type, in particular the third arrival on the
seismograms for the strongly anisotropic structures shown on Figures 4 and 5.

Finally, we calculated seismograms for a vertical array of receivers located at
20m separation as shown in Figure 7, at an offset of 400m. The vertical and horizontal
components are shown in Figure 8. In addition, we show on Figure 9 seismograms
for a horizontal array of receivers at 30m interval, located at a level 400m below the
source. In both the VSP and the horizontal array, we notice the appearance of the
second quasi-S wave, at a minimal distance or, equivalently, a minimal group angle.

CONCLUSIONS

We presented here a formalism by which an explosive point-source is defined in
a transversely isotropic medium. Such a source generates both quasi-P and quasi-S
waves. For strongly anisotropic solid, multiple quasi S-wave is generated by the
source, which means that in a layered medium the physical picture of rays bouncing up
and down in various layers is much more complicated. The formalism presented here
can handle any layered, sectionally continuous structure with results that can be
obtained within a given numerical tolerance.
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Figure l: The location of source and receivers for the computed seismograms.
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Figure 2: A profile of synthetic seismograms for a homogenous space, consisting of
Pierre shale material. The receivers axe located at a distance of 500m from the source,
at different group angle s .
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Figure 3: A profile of synthetic seismograms for a homogenous space, consisting of
Austin chalk material. The receivers are located at a distance of 500m from the source,
at different group angles.

CREWESResearch Report Volume5 (1993) 21-13



Abramovici and Le

, i

0 _ t 0
I CO (30

,_-_:,, j_ o , ,, , o_
\,, A," ),x__-

_ _ ," <

I 0 0

d o o d o <:5 d o o d d d

(oas)ew!l (_es)ew!l

Figure 4: A profile of synthetic seismograms for a homogenous space, consisting of
gypsum-soil material. The receivers are located at a distance of 500m from the source,
at different group angles.
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Figure 5: A profile of synthetic seismograms for a homogenous space, consisting of the
composite material plexiglas-aluminum. The receivers are located at a distance of 500m
from the source, at different group angles.
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Figure 6: Group (thick curves) and phase (dashed curves) velocities of the quasi-P and
quasi-S waves for the four transversely isotropic materials listed in Table 1.
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Figure 7: The location of source and receivers for a vertical seismic profile.
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Figure 8: Vertical seismic profile in a homogeneous space consisting of the composite
material plexiglas-aluminum.
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Figure 9: A profile of synthetic seismograms in a homogeneous space, with receivers
forming a horizontal array. The medium is assumed to be made of the composite
material plexiglas-aluminum.
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