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Estimating anisotropic permeability from attenuation
anisotropy using 3C-2D data

Nicolas W. Martin and R. James Brown

ABSTRACT

It has been experimentally proved that the attenuation, Q, rather than velocity, is

strongly correlated with permeability (Klimentos and McCann, 1990; Akbar et al.,

1993). Thus it should be possible to relate attenuation anisotropy with anisotropic

permeability in partially or completely saturated rocks (Gelinsky et al., 1994).

A mathematical approach is presented for estimating anisotropic permeability from

3C-2D data, using the narrow relationship between seismic attenuation and

permeability as predicted by Biot�s laws for isotropic saturated porous media.

This approach could be applied to media with anisotropic permeability due to

transverse isotropy produced by a stack of horizontal layers or azimuthal anisotropy

caused by vertical fractures.

INTRODUCTION

Recently, Gibson and Toksöz (1990) predicted how the permeability would vary with

direction in fractured rocks based on seismic velocity anisotropy. Further, the experimental

data of Han (1987) and Klimentos and McCann (1990) obtained on sandstone samples

show that the attenuation coefficient is more strongly related to clay content than velocity.

On the other hand, Klimentos and McCann show a strong systematic relation between clay

content and permeability and they conclude that attenuation is the key factor in determining

permeability.

Additionally, the work of Gelinsky and Shapiro (1994a, b) shows that, for seismic

frequencies, the attenuation anisotropy is proportional to the permeability anisotropy. In

their study, anisotropy is considered twofold, consisting first of a weak anisotropy of the

elastic constants and second of a much stronger anisotropy of the system's permeability.

They showed that the absolute value of the qSV-wave attenuation is larger than that of the

qP waves for all frequencies in a material with anisotropic permeability and a homogeneous

and isotropic frame.

Then it is feasible to obtain valuable information about the reservoir anisotropy from the

study of the behavior of the seismic attenuation with direction using 3C-3D seismic data. It

is expected that by estimating the attenuation for P, SV and SH waves one can obtain a

better image of the spatial distribution of the permeability in the reservoir.
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THEORY

In general terms, a reservoir can present at least two different types of anisotropy:

(i) transverse isotropy, caused by fine horizontal layering (Fig. 1a), and (ii) azimuthal

anisotropy due to parallel (or nearly parallel) vertical aligned cracks or fractures, or

due to unequal horizontal stresses (Fig. 1b).

For both anisotropies the elastic properties vary depending on the direction of

measurement. In the first case, waves generally travel faster horizontally, along layers,

than vertically across layers. For materials showing azimuthal anisotropy, waves

traveling along the fracture direction ¾ but within the competent rock ¾ generally

travel faster than waves crossing the fractures.
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Fig. 1. Simple geometries assumed for elastic anisotropy.(a) In layered rock, elastic

properties are uniform within horizontal layers, but may vary vertically and from layer to

layer.(b) In vertically cracked rocks, elastic properties are uniform in vertical planes pa-rallel

to the cracks, but may vary in the direction across the cracks.

In both cases, however if there exists any anisotropy caused by horizontal fine

layering or fractures, it means that, besides the anisotropic static poroelastic stiffness

tensor, the material will show a dynamic effect of anisotropic permeability as well.

In fact, for materials showing transverse isotropy, the permeability ¾ the ease with

fluids flow through rock ¾ measured parallel to the layers of porous sedimentary

rocks can be greater than the vertically measured permeability (k k
h v

> ). In the other

case, the vertical fractures acts as barriers to the fluid flow and the permeability

measured perpendicular to the fracture planes is smaller than the permeability of the

rock matrix measured parallel to the fractures (k k
h v

< ).
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As a result of anisotropy, at a given point in the medium the direction of the

pressure-gradient vector is, in general, different from that of the velocity vector. In the

general case of an anisotropic medium, there will result three different flow rates in

each of the x, y, and z directions, whereas in an isotropic medium the flow is equal

along all of these directions. Darcy�s law for anisotropic media (Dullien, 1979) should

be written as follows:

v k
P

x
k

P

x
k

P

xi i i i
= − + +











1

1
1

2
2

3
3

µ
∂
∂

∂
∂

∂
∂

       (I= 1, 2, 3), (1)

or

r

r

v k P= − ∇( )µ (2)

where 1, 2, and 3 represent the x, y, and z coordinates; k
ij

 form the elements of a

second-order tensor, the values of which depend on the orientation of the medium

with respect to the coordinate system; 
r

v  is the velocity vector, and ∇
r

P  is the

pressure-gradient vector.

Assuming that anisotropic porous media are orthorhombic, i.e., they have three

mutually orthogonal principal axes, the permeability tensor K  is symmetric (k k
ij ji

= )

and rotation of the coordinate system will produce a diagonal matrix when the three

coordinate axes are aligned with the principal axes of the medium. For this particular

orientation of the medium, the pressure gradient and the velocity have the same

direction and, therefore, in this case Darcy�s law becomes:

v k P x
i i i

= − 









µ ∂ ∂      (I= 1, 2, 3), (3)

where the three different values of k
i
 are still, in general, not equal.

The theory of Biot (1956, 1962) of wave propagation in an isotropic porous solid

shows that there are two kinds of P waves (fast and slow) and a single S wave. Both

compressional waves have different attenuations. The fast P wave has virtually

constant phase velocity, although there is a small term varying as the square of

frequency. The S wave also has constant velocity, as well as the same behavior of the

attenuation with frequency (≈ f
2

). This theory is valid only for a low-frequency range

defined by the condition: f k
f

<


 


015 2. ηφ πρ  where r and ρ

f
 are the densities of

the saturated rock and of the fluid in the pore space, respectively, f is the porosity, h

is the viscosity of the fluid, k is the permeability, and f is the frequency.

The anisotropic permeability enters the Biot equations through a dissipation term.

Because of the anisotropy, P and S waves do not separate anymore completely. An SH
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wave appears now. Then, the results of Biot (White, 1965) show that at low

frequencies, when we consider wave propagation in an anisotropic porous medium,

the attenuation coefficient g for P , SV and SH waves can be expressed as:

γ
π ρ

ρ
σ

ρ
ηP

P

f

i Pv
k f= −





















2
2 2

2

γ
π ρ

ρ
ρ
ηSV

sv

f

SVv
k f=





















2
2 2

2
(4)

γ
π ρ

ρ
ρ
ηSH

SH

f

SHv
k f=





















2
2 2

2

where v is the phase velocity, g is the attenuation coefficient, and σ
i
 is a dimensionless

rock modulus. The P, SV, and SH index for permeability and phase velocity represents

the corresponding values of both parameters associated with each wave mode.

To analyze the seismic effects of global fluid flow in a system with anisotropic

permeability, we initially consider a simple  model which in the static limit is

homogeneous and isotropic. Anisotropy of wave propagation is then a dynamic effect

caused only by anisotropic permeability. In this way we can extend Biot�s results for

porous media to the case of anisotropic permeability. Figure 2 shows a sketch of an

anisotropic porous solid. The axis vertical to the Earth�s surface is the z-axis and the

angle q  is defined between the slowness vector, 
r

p , and the axis of symmetry. If the

principal axes of the permeability tensor are chosen as coordinate axes, the

permeability tensor becomes diagonal. Denoting the �principal� permeabilities as k
1
,

k
2
, and k

3
 and the angles made by the propagation slowness vector, 

r

p , with the

principal axes as a, b, and g, we can express the magnitude of the permeability vector
r

k  as:

k k k k= + +
1

2

2

2

3

2
cos cos cosα β γ  , (5)

As the pressure gradients produced by the traveling wave and the phase velocity

have the same direction for orthorhombic anisotropic porous media, we have:

k k k k
P

= + +
1

2 2

2

2 2

3

2
cos sin sin sin cosθ ξ θ ξ θ

k k k k
SV

= + +
1

2 2

2

2 2

3

2
cos cos cos sin sinθ ξ θ ξ θ (6)

and
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k k k
SH

= +
1

2

2

2
sin cosξ ξ

where x is the azimuthal angle of the plane containing the P and SV waves with respect

to the x axis.

SH

SV

P

Y

X

Z

ACQUISITION

LINE

PROPAGATION

DIRECTION

A

A

0

Fig. 2. Propagation direction for P, SV, and SH waves in an anisotropic porous media.

The equations (4) and (6) permit us relate the �principal� permeability components

k
1
, k

2
, and k

3
 with the attenuation coefficients γ

P
, γ

SV
, and γ

SH
 associated with

the three P, SV, and SH wave modes.

Combining these equations we obtain a linear system of equations with three

unknowns k
1
, k

2
, and k

3
 as follows:

sin cos sin sin cos

cos cos cos sin sin

sin cos

2 2 2 2 2

2 2 2 2 2

2 2

1

2

3

1

2

3
0

θ ξ θ ξ θ

θ ξ θ ξ θ

ξ ξ



































=

















k

k

k

A

A

A

(7)

where

A

v

P

p

f i

1 2 2
2

1
=









−
γ

π

η
ρ ρ ρ σ( )
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A
v

SV

SV

f

2 2 2
2

1
=







γ

π

η
ρ ρ ρ( )

(8)

A
v

SH

SH

f

3 2 2
2

1
=







γ

π

η
ρ ρ ρ( )

The solutions k
1
, k

2
, and k

3
 are the principal permeabilities for a material whose

anisotropy of wave propagation is only due to anisotropic permeability. But, as was

related before, cracks or layering lead to an additional anisotropy of the elastic

poroelastic stiffness tensor. This static poroelastic anisotropy may be described by

poroelastic P-, SV-, and SH-wave phase velocities v
P

, v
SV

, and v
SH

 and by the

Thomsen (1986) parameters (e, g, d), specified by a formalism for fluid-filled, aligned

cracks (Schoenberg and Douma, 1988). This will directly affect the phase velocities

and become dominant for seismic frequencies affecting the seismic attenuation as well.

 CONCLUSIONS

A mathematical background has been presented for estimating the principal

permeabilities k
1
, k

2
, and k

3
 by measurements of the seismic attenuation for P, SV,

and SH waves in 3C-2D data.

The estimated permeabilities k
1
, k

2
, and k

3
 for an homogeneous, isotropic, porous

medium with a dynamic anisotropic permeability, caused by fractures or a stack of

layers, depend on the seismic attenuation, phase velocity, q (the angle of wave

propagation), and x  (the azimuthal direction of the seismic line).

For a more detailed description of the permeability behavior, it is necessary to

consider the anisotropy of the static poroelastic stiffness tensor as given by the

Thomsen parameters for fluid-filled, aligned cracks.
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