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Energy partition at the boundary between anisotropic media;
Part two: Raytracing in layered, anisotropic media -
comparison of traveltimes for synthetic and experimental
results

Michael A. Slawinski, Raphaël A. Slawinski and R. James Brown

ABSTRACT

We present a ray-tracing method for layered, anisotropic media.  The method is
used to calculate traveltimes for a two-layer isotropic/anisotropic medium consisting
of PVC and Phenolic CE. We compare the numerical results with experimental data,
confirming the validity of the approach.  Furthermore, the comparison illustrates that
physical measurements of such a model are better described by the anisotropic
approach than by the isotropic one.

The usefulness of our method can be extended to various modelling schemes, near-
surface statics corrections, vertical-seismic-profile (VSP) studies and inversion.
Equations used in ray tracing are, in general, analytic and can easily be coded.

INTRODUCTION

Slawinski and Slawinski (1994) presented an analytic “Snell’s law” formalism for
anisotropic media in which all expressions are exact and can be applied in most
circumstances. The fact that the phase-slowness surface is smooth and never has
cusps (Winterstein, 1990) ensures the applicability of vector calculus methods
required by the formalism.  The direct use of this formalism requires an expression of
slowness surfaces as functions of three Cartesian coordinates x, y, and z.  Slowness
surfaces are three-dimensional closed surfaces of various degrees of symmetry,
reducing in the isotropic case to spheres.  The choice of spherical coordinates for
description of a slowness surface, or polar coordinates for description of a slowness
curve, is natural.  Thus instead of directing one’s efforts towards developing a method
of expressing slowness surfaces or curves in Cartesian coordinates, or as parametric
plots, another method is adopted. The formalism serves as a template for  linking,
through the relation between Cartesian and polar coordinates, the analytical method
for calculating angle of transmission across an interface, with actual measures of
anisotropy defining the materials.  Most commonly they are expressed  as elastic
constants, Cij, the entries of a 6x6 stiffness matrix relating stress and strain vectors,
i.e., the anisotropic form of Hooke’s law. Thomsen (1986) suggests particular
combinations of elastic constants as convenient measures of anisotropy. They are
referred to in this paper as anisotropic parameters, and are denoted by δ, ε and γ.  The
velocities of both compressional and shear waves can be expressed in terms of those
parameters.

If the anisotropy is not very pronounced the formulæ for phase velocities can be
developed in Taylor series and higher-order terms ignored without significant loss of
accuracy (Thomsen, 1986). In the geophysical context, this process can be justified by
the fact that, although on a small scale many crystals are highly anisotropic, the rocks
that they form exhibit, in general, only moderate anisotropy as perceived by a wavelet
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of the relatively low frequencies typical in seismic studies. The phase-velocity
formulæ for three wave types in weakly anisotropic media provide the expressions
used in deriving the mathematically tractable, as well as easily coded, Snell’s law-or
more properly, laws of reflection and refraction for such media, which are, of course,
not embraced by Snell’s law.

In principle, it is possible to use the exact formulæ for phase velocities derived by
Daley and Hron (1977) and expressed in terms of anisotropic parameters by Thomsen
(1986).  The significant loss of clarity of development caused by employing such
complicated equations was avoided by using, in their stead, the approximate
equations governing weak anisotropy. It is the slowness surfaces which form the
kernel of Snell’s law.  Since the formulæ for phase slowness can be elegantly
described in polar coordinates it is preferable to translate the earlier formalism to this
system.

The formulæ given below refer explicitly to propagation within a transversely
isotropic (TI) system with a vertical symmetry axis (TIV), or in the symmetry plane of
a given medium (e.g., an orthorhombic medium was used in laboratory
measurements).  The distinctive elastic properties of the TIV system are an infinite-
fold vertical axis of rotational symmetry, and an infinite set of two-fold horizontal
symmetry axes (Winterstein, 1990).  It is described by five independent elastic
constants. A TIV system describes well the intrinsic anisotropy found in a horizontal
sedimentary layer like a shale unit.  Also, a series of isotropic layers of thickness
considerably smaller than the wavelength exhibits, as a whole, TIV symmetry (e.g.,
Postma, 1955, Schoenberg, 1994).

The assumption of weak anisotropy implies that for the compressional-wave
solution, the divergence of displacement is much larger than its rotation; while for
the shear-wave solutions, the rotation is much larger than the divergence (Helbig,
1994).  Thus the solutions are only weakly coupled and the particle displacement is
almost parallel (in the case of  quasi-compressional waves) or almost orthogonal (in
the case of quasi-shear waves) to the direction of propagation.  It can be shown that
the wave equation for transverse isotropy yields three independent solutions
corresponding to mutually orthogonal polarization directions. The solutions refer to
one quasi-longitudinal wave (qP), one quasi-transverse wave (qSV) and one exactly
transverse wave (SH) (e.g., Keith and Crampin, 1977).  Along the symmetry axis all
polarizations become pure and all expressions reduce to the isotropic form. An
important consequence of weak anisotropy in TI media is that it is reasonable to
consider two separate cases: one involving P, SV and the other SH waves,
respectively.

The simplification of expressions for phase velocities is achieved by developing
the original expressions in Taylor series and neglecting higher-order terms, under the
assumption that the anisotropic parameters are much smaller than unity. Although the
simplification of expressions is very considerable (Thomsen, 1986), the accuracy is
very high as long as the weak-anisotropy assumption is not violated.  Thank to this
assumption and the ensuing simplifications, the entire mathematical treatment
developed and used in this paper is tractable, and, in most practical situations, leads to
analytical expressions.

If any computational algorithm is to work for general anisotropy it must also work
for weak anisotropy. Thus, a mathematically tractable approach provides a potential
verification for a machine-intensive program which would use the full form of the
equations for velocity anisotropy.  The innovative aspect of  the approach presented in
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this paper consists of a clear analytical method for calculating propagation angles
across an interface in anisotropic media, with all quantities related to the set of
measurable parameters proposed by Thomsen (1986) and widely used by numerous
researchers (e.g., Stewart, 1988, Cheadle et al., 1991, Brown et al., 1991).  Except for
using the weak-anisotropy form of the expression for phase velocity, the present
method makes no simplifications or approximations in deriving the
reflection/refraction expressions for weakly anisotropic media.

   QUASI-COMPRESSIONAL WAVES

Phase velocity

The phase velocity of a quasi-compressional, qP, wave in a weakly anisotropic
medium is given by Thomsen (1986) as:

vqP ( ) ( sin cos cos )ξ α δ ξ ξ ε ξ= + +0
2 2 41 . (1)

In this paper the phase angle, ξ, is the phase latitude, and a complement of the
Thomsen’s angle, θ, which is equivalent to the phase colatitude, i.e.,

ξ π θ= −/ 2 , (2)

thus changing in some equations, cosine function to sine function.  In this form, one
can take advantage of standard vector-calculus expressions in polar coordinates, in
which the argument is measured with respect to the horizontal axis.  Thus the gradient
can be expressed as follows:

∇ = +f r
f

r r

f
( , )ξ ∂

∂
∂
∂ξ

r Ξ 1
 , (3)

where the angle, ξ, is measured with respect to the x-axis.

The anisotropic parameters used in the expression for phase velocity are defined in
terms of  either elastic constants, Cij, or measured velocities.  The latter definition
proves very helpful in experimental studies, e.g., Cheadle et al. (1991). From the
experimental point of view, one ideally should have expressions for the anisotropy
parameters in terms of both group and phase velocities, though one can always make
do with the latter. In the laboratory, if anisotropy is sufficiently weak and transducer
separation sufficiently small in relation to the diameters of the transducers, then one
measures phase traveltimes (Dellinger and Vernik, 1994; Vestrum et al., 1996). If the
anisotropy is sufficiently strong and the transducer separation sufficiently large in
relation to their diameter, then one can determine group traveltimes. With any given
sample, one can practically always cut as small a piece as is necessary to achieve
phase-traveltime measurement. In either case, it is important to be aware what type of
velocity one is measuring (Vestrum, 1994).

For the parameters δ and ε relevant to qP-wave propagation:
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where Cij are entries in the stiffness matrix relating the six components of stress to the
six components of strain, and VP  denotes  measured velocity. Sometimes, in these
weak-anisotropy approximations involving “measured velocity”, either group or
phase velocity will do more or less equally well and often, in practice, the
experimentally observed traveltimes divided into the transducer separation would
suffice without rigorous regard for the group/phase question. For deriving anisotropic
parameters from actual measurements, however, it is advisable to use exact equations
instead of their approximate counterparts. Particularly δ is prone to the propagation of
experimental errors in its approximate form (Thomsen, 1986; Brown et al., 1991).

The symbol αo denotes the speed of a ray propagating vertically, along the
symmetry axis of  the medium.  It can be expressed in terms of an elastic constant or,
similarly to the isotropic case, in terms of the Lamé parameters, λ, µ, and the density
of the medium, ρ; that is:

α
ρ

λ µ
ρ0

33 2= = +C
. (6)

Notice that, for a ray propagating vertically, or horizontally, the phase and group
velocities coincide, both in exact and approximate expressions.  This is not
necessarily the case in any other direction of propagation and it is important to
distinguish between the two concepts.

Transmission angle

The subsequent development follows the formalism developed by Slawinski and
Slawinski (1994). Firstly, one must formulate an expression for a slowness surface.
The phase slowness is the reciprocal of the phase velocity, obtained by taking
reciprocals of all points on the phase velocity surface (e.g., Winterstein, 1990). Thus,
the slowness surface is given by a level surface defined by the inverse of the phase
velocity function.

Let f(r,ξ) be a function in slowness space defined by:

f r
r

( , ) ( sin cos cos )ξ α δ ξ ξ ε ξ= − +1
0

2 2 4 ,  (7)

where r is the radius of the slowness surface, i.e., the magnitude of the slowness.
Similarly, working in slowness space, x, y and z are the Cartesian components of
slowness (cf. Slawinski and Slawinski, 1994).
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For a particular TI medium, its slowness as a function of ξ is r(ξ) which is given
by equation (16). This set of points [r(ξ),ξ] is also given by the intersection of f(r, ξ)
with the plane f = αo, i.e., by the set of points (r, ξ) for which:

f r( , )ξ α= 0 .  (8)

The ray (group) vector is always perpendicular to the slowness surface, i.e., its
direction is parallel to the gradient of the slowness surface. Using calculus and
various trigonometric identities, the gradient of f(r, ξ) can be written as follows:
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where r  is the unit radius vector and ΞΞ is the unit azimuthal vector. The length of the
gradient is:
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Thus the unit ray vector, w, in the direction of the ray is [Slawinski and Slawinski,
1994; equation (11)]:

w = ∇
∇

f

f
. (11)

The angle between the unit ray vector, w, and the normal can be found using the
definition of the dot product.  Using the vertical unit vector, z, one may write:

cosθ = ⋅z w . (12)

In polar coordinates, the Cartesian unit vector, z, can be expressed in terms of its
relation  to the radius r and the argument angle ξ.  In the present context the argument
corresponds to the phase angle, i.e.:

z r= +sin cosξ ξΞ  . (13)

This form is used in the desired dot product. Combining equations (9) through
(13), one can express the group angle, θt, which the group slowness vector of a
transmitted ray makes with the normal to the interface, in terms of the phase angle, ξ,
measured from the horizontal as:

( )
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In relating the incidence angle to the transmission angle one uses the fact that, for
horizontal interfaces, the horizontal component of slowness, xo, i.e., the ray
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parameter, must be constant. If the medium of incidence is isotropic than phase and
group angles (and velocities) coincide.  The horizontal component of slowness can be
calculated, given the angle of incidence, from:

x
v

xi
i= ≡

sinθ
0 , (15)

where the angle of incidence, θi, is measured from the vertical, and v is the speed in
the isotropic medium of incidence.

The radius of the cross-section of the qP-slowness surface(i.e., the slowness) for
the anisotropic medium of transmission in the xz-plane is given by the inverse of the
phase velocity:

r ( )
( sin cos cos )

ξ
α δ ξ ξ ε ξ

=
+ +

1

10
2 2 4

 , (16)

and the horizontal component of slowness at a given point on a slowness surface is
given by:

x r( ) ( ) cosξ ξ ξ= . (17)

Inserting equation (16) into equation (17) gives a relationship between the
horizontal component of slowness, i.e., the ray parameter, xo, and the slowness
surface for compressional waves; namely:

x( )
cos

( sin cos cos )
ξ ξ

α δ ξ ξ ε ξ
=

+ +0
2 2 41

.  (18)

Equation  (18) can be rewritten as a quartic in cosξ and solved explicitly for the
phase angle, ξ.  Given the incidence angle, θi, and thus the ray parameter, x0, one
obtains:

α ε δ ξ α δ ξ ξ α0 0
4

0 0
2

0 0 0x x x( ) cos cos cos− + − + = .    (19)

The appropriate value of ξ can be inserted in equations (14) and (16) and the angle
of transmission calculated. An insightful look into the solution of the quartic equation
is given in this volume by Slawinski (1995).  Note that in the case of elliptical
anisotropy, i.e., ε = δ, the quartic is reduced to a quadratic of the form analogous to
the equation for SH-waves.  Also note that, in all expressions, θ is the group (ray)
angle measured with respect to the normal to the interface, and ξ is the phase angle
measured with respect to the horizontal.

RAY TRACING

An important element of  studying wave propagation consists of the ability of
predicting theoretically the results which one would obtain by measuring, at a given
receiver, a signal emitted by a distant source.  A powerful and rather intuitive
technique  for this purpose is provided by the ray theory.  This is an approximation to
the full-wave theory and derives from the approach used in geometrical optics. With
the aid of Snell’s law, using ray-tracing theory and knowing all parameters of the
medium, one can calculate the trajectory of a ray between the source and receiver, as
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well as the traveltime required.  This is a, so called, forward problem or forward
modelling: one calculates the “observed” results knowing all parameters.

Ray-tracing concepts

The crucial point of ray tracing between a given source and receiver consists of
finding the incidence  angle which, in combination with transmitted angles, and
obeying Snell’s law at all interfaces, yields the raypath corresponding to a given
source-receiver distance.  This is, as a matter of fact, a little inverse problem, here
used in the larger context of forward modelling. The required equation for a two-layer
case, can be written as follows:

X X X1 2+ = ,  (20)

i.e., the sum of horizontal distances travelled in the first, X1, and the second, X2, layer,
must equal the total horizontal distance between the source and receiver, X. In terms
of layer thicknesses, h1 and h2, as well as angles of incidence, θi, and transmission, θt,
this can be written as:

h h X1 1 2 2tan tanθ θ+ = , (21)

or in terms of angle of incidence:

h h Xi t i1 2tan tan[ ( )]θ θ θ+ = , (22)

where the expression in square brackets, i.e., angle of transmission as a function of
the angle of incidence, is a concise statement of Snell’s law.

Overview of the ray-tracing algorithm

The ray tracing algorithm has been implemented using Mathematica software
(Wolfram, 1991).  The software was used to solve the quartic under the constraints
provided by source and receiver locations, and the parameters of the medium.  The
algorithm was tailored specifically to the experiment, i.e., a two-layer case:
isotropic/anisotropic.

The algorithm can be described in the following way:

- Firstly, a “take-off” angle is calculated by solving equation (22) for a given
source-receiver separation.  It is impossible to solve such an equation explicitly for θi,
and therefore a root-finding routine is employed.  The anisotropic formulation of
transmission angle is honoured in the search for the “take-off” angle.  In the process
of finding, θi, which in the isotropic medium of incidence corresponds to both phase
and group angles, the values of phase and group angles, ξ and θ, in the medium of
transmission are established.

- Secondly, the magnitude of group velocity corresponding to the ray
exhibiting the angles calculated in the step above is calculated in both media.  Again,
the process is facilitated by the fact that in the isotropic medium of incidence the
notions of phase and group velocity coincide and, as a matter of fact, by the very
definition of isotropy, their magnitudes are constant.
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- Thirdly, the distances travelled by a signal in either medium are calculated
based on layer thicknesses, source-receiver distance, and group angles.  Subsequently,
the traveltime is computed, i.e., the ratio of distance travelled to group velocity.

PHYSICAL MODELLING

Physical modelling provides the results of controlled experiments, which can be
compared with numerically obtained predictions.  It provides an indication of the
degree of correctness of the theoretical approach.  In this study, laboratory
measurements serve as a template to compare two approaches for ray tracing; namely
the approach based on the weak-anisotropy assumption, and the more traditional
approach, ignoring anisotropic effects.  Such comparison, in practical consideration,
can help one decide whether sufficient accuracy is achieved by a more straightforward
isotropic approach or whether one should resort to a more complicated anisotropic
approach.

Materials

The medium through which the signal is transmitted is composed of two layers.
The model with its anisotropic parameters in the 31-plane was considered as a
standard model.

The top, isotropic, layer consists of  PVC and the lower, anisotropic layer of
Phenolic CE.  The CE-grade phenolic laminate is composed of layers of a woven
canvas fabric saturated and bonded with phenolic resin. The woven pattern results in
anisotropic symmetry.  Former studies (e.g., Cheadle et al., 1991; Brown et al., 1991;
Vestrum, 1994) have shown that Phenolic CE can be classified as belonging to the
orthorhombic symmetry group. Experiments were conducted with the 31-plane as a
saggital plane (Cheadle et al., 1991).  Principal dimensions and quantities are shown
in Tables 1, 2 and 3.

Layer # Material Thickness (m) Symmetry Class
1 PCV 0.0355 m isotropic
2 Phenolic CE 0.1045 m orthorhombic

Table 1.  The principle dimensions and characteristics of the model

Layer # /
Symmetry plane

Vertical P-wave
speed (m/s)

1/ isotropic 2250
2 / (31-plane) 2925

Table 2. Vertical or isotropic speeds of the model

The values of the anisotropic parameters result from experimental measurements
on the very same material performed in the same laboratory setting and reported by
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Cheadle et al. (1991).  The results were confirmed by the subsequent study of
Vestrum (1994).

Layer # /
Symmetry plane

δδ εε

1 0 0
2 / (31-plane) 0.183 0.224

Table 3. Anisotropic parameters of the model.

Experimental setup

The data were recorded using two transducers of 1-MHz frequency, one being a
transmitter, the other a receiver.  The transmitter was fixed in one location, while the
receiver was moved along the straight line containing the symmetry plane. The
readings were taken every millimetre in a horizontal range from 0 mm to 300 mm.

The apparatus used in the data acquisition is a converted high-precision plotter.
The entire acquisition process is performed automatically.

X (source-receiver distance )

     transmitter

PVC
      0.0355 m

Phenolic CE       0.1045 m

receiver

Fig. 1. A schematic diagram of the experimental set-up.

Data analysis

Recorded signal was plotted as a standard seismic display.  In order to use standard
plotting devices, as well as to render the results more immediately applicable to a
geophysical context, the distances were scaled by a factor of 10,000. This also implies
that traveltime values are scaled by the same factor.
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The case of transmitted and received compressional waves served as a test for the
predictive power of raytracing procedures described in this paper.  This case, as
opposed to SV or SH waves, was selected as giving the cleanest first breaks because
the compressional waves are the first to arrive at the receiver.

The results show that, as expected, the raytracing incorporating the anisotropic
effects predicts better the experimental results.

Scaled offset (m) Traveltime in 31-plane (s) Traveltime (s)
calculated

(anisotropic)
ααo=  2925 m/s

δδ = 0.183
εε = 0.224

measured calculated
(isotropic)

v = 2925 m/s

0 0.515385 0.516 0.515385
190 0.518585 0.519 0.519702
390 0.528745 0.528 0.534388
590 0.545512 0.544 0.558283
790 0.568328 0.569 0.590214
990 0.596497 0.601 0.628889

1190 0.629263 0.635 0.673073

Table 4. Traveltimes for P-waves; the calculated values are based on the anisotropic
approach using values of anisotropic parameters published by Cheadle et al. (1991).

The calculation based on the anisotropic approach using the values of anisotropic
parameters published for the block of Phenolic CE by Cheadle et al. (1991)
approximates the measured times much more closely than the calculation based on the
isotropic approach (see Table 4 and Figure 2).  This confirms that the anisotropic
approaches reflects better the reality of the experiment.  In the context of exploration
geophysics, it implies that in certain areas one might consider analysis of the data that
takes anisotropy into account.

CONCLUSIONS: PRACTICAL APPLICATIONS

Modelling

A reliable method allowing one to generate synthetically the experimental results
can play a very important rôle.  Such a technique incorporated into the planning of a
seismic experiment, allows one to anticipate the results and thus to correctly deploy
sources, receivers, and other experimental apparatus.  Furthermore, it allows the
interpreter to verify (while keeping in mind the intrinsic non-uniqueness) the results
of interpretation by comparing synthetic data, generated based on a given
interpretation, with experimental results.
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P-P waves in 31-plane
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Fig.2. A graphical comparison of results for compressional (P-P) waves in the 31-plane.  Note
the excellent fit between measured traveltimes (squares) and traveltimes calculated using
“anisotropic” raytracing (diamonds).  Also note that results obtained using “isotropic”
raytracing (triangles) depart increasingly from the measured data with increasing offset within
the range typical in exploration geophysics.

The ray-tracing method presented here allows one to generate synthetically results
of wave propagation in layered weakly anisotropic media.  Although the present paper
concentrates on compressional waves and a two-layer isotropic/anisotropic case, the
method has been elaborated to include both compressional and shear waves in multi-
layer anisotropic media.

The ray-tracing method presented can serve as the basis of decision as to whether
or not an ”anisotropic” approach should be followed.  The degree of anisotropy can be
varied by modifying anisotropic parameters and the discrepancy between isotropic
and anisotropic approaches investigated.  As indicated by physical experiments, the
anisotropic-modelling approach reflects very closely the experimental results; one
should, however, keep in mind that the algorithm is designed for weakly anisotropic
media, and the accuracy of results relies on this assumption.  As a reasonable rule one
can accept degree of anisotropy of about 20% as being the limit of applicability.

Near-surface static corrections

Calculation of static corrections, dealing with shallow reflections and refractions,
employ obliquely traveling rays.  For such rays the effects of anisotropy are, in
general, more pronounced than for deep reflections for which all rays are nearly
vertical.  Furthermore, large differences in velocities among near-surface layers
emphasize the raybending at interfaces, calling for an accurate description of this
phenomenon.
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The anisotropic ray tracing presented in this paper allows one to calculate static
corrections including the effects of anisotropy.  For instance, it is important to realize
that the value of the critical angle is not the same for isotropic and anisotropic cases,
thus directly affecting results of refraction statics.

Vertical seismic profiling (VSP)

The recording geometry of an offset-VSP, with receivers deployed throughout a
long section of the wellbore and the source located on the surface at a considerable
lateral distance from the well, can be particularly affected by anisotropic effects.  The
data set comprises propagation directions ranging from nearly vertical to nearly
horizontal, thus giving the opportunity for any angular dependence to manifest itself.

Assuming that the anisotropy of the rock mass can be characterized as a TIV
system, i.e., transverse isotropy with the vertical symmetry axis, and the geological
layering is approximately horizontal, the VSP geometry is ideally suited for
employing the method presented in this paper.  As a matter of general practice, in
addition to the offset source, one [often, usually] records with a zero-offset source.
For the latter case the rays travel nearly vertically and, since the distance traveled is
measured by the geophone cable, the traveltime reliably yields the vertical speed, a0,
required by the formalism.  Subsequently, by modifying anisotropic parameters, d and
e, one can fit modelled and actual data.

Furthermore, VSP geometry provides an excellent experimental setup for
traveltime inversion, which can yield the anisotropic parameters.  As already
mentioned, this geometry gives reliable information on the vertical speed from the
zero-offset record and on the angle-dependent traveltime measurements from the far-
offset record.  Moreover, the presence of the wellbore provides information about
thicknesses of sedimentary layers.

 Inversion

The ray-tracing method presented in this paper forms the basis of an inversion
method which yields the values of anisotropic parameters based on measurements of
traveltime.  An analytical traveltime inversion has been formulated and successfully
tested for SH waves.
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