
A Matlab interface to ProMAX

CREWES Research Report — Volume 8 (1996) 11-1

A Matlab interface to ProMAX

Henry C. Bland

ABSTRACT

A new tool has been developed to aid researchers in performing ad-hoc operations
on seismic data. This tool allows the feature-rich seismic processing environment,
ProMAX, to be used in conjunction with a user-friendly numerical computation
environment, Matlab. A software gateway is established between the two environments
that allows seismic data or database information to flow bidirectionally. This allows for
easy development of new seismic processing tools without the need for tedious
programming in lower-level languages such as Fortran or C.

INTRODUCTION

Developers of seismic processing techniques find it difficult to test new ideas
because commercial processing systems require significant programming effort to
implement new algorithms. At the root of the problem are differing priorities: the
researcher wants to use a programming environment that stresses ease of
implementation whereas commercial processing software stresses robustness and
speed. This project is an attempt to simplify the development of new algorithms by
allowing user-friendly programming environment to be used in conjunction with a
commercial processing system. This paper will first discuss ProMAX and Matlab and
then describe the software gateway between them.

ProMAX

ProMAX is a commercial processing system produced by Landmark/Advance. It
features a large number of processing tools and has been designed for high speed,
heavy-duty processing. For researchers in exploration geophysics, ProMAX offers a
number of useful tools including data loading, dataset manipulation, database
operations, seismic display and plotting, and (of course) processes ranging from trace
reversal to migration.

Though relatively easy for an experienced programmer, adding new tools to
ProMAX can be challenging for researchers who’s forte is geophysics and not
computational science. Writing programs in the ProMAX environment requires a good
grasp of either C/C++ or Fortran. Those who choose to program in Fortran 77 find it
awkward to deal with Fortran 77’s lack of dynamic memory allocation. Having helped
a number of geophysics graduate students add modules to ProMAX, the author has
found that they spend more time integrating their code into ProMAX than they do
developing their algorithms.

Matlab

Matlab is a numerical computation and visualization environment which it ideally
suited to ad-hoc operations on vectors and matrices. Using Matlab’s built-in matrix
operators and a large library of support functions, one can perform sophisticated
operations on seismic data without traditional programming. In addition to its
computational functions, Matlab also has a number of graphics and visualization
functions which are useful for data analysis.

Bland

11-2 CREWES Research Report — Volume 8 (1996)

Matlab can be used interactively or under program control. Programs can be built by
combining Matlab commands into Matlab command files (called M-files). The Matlab
command language is versatile enough to allow complex applications to be written
completely inside the Matlab environment (Dufour, 1996).

THE MATLAB / PROMAX GATEWAY

The gateway provides a set of Matlab functions that allow access to ProMAX
datasets and the ProMAX database1. The gateway is made up of two components:
Matlab functions which are called within the Matlab environment, and a ProMAX
“process module” which is placed in a ProMAX processing flow. The ProMAX side of
the gateway must be started before any gateway functions can be called within Matlab.
A user would typically start-up ProMAX, select the area and line from within
ProMAX, and build a short processing flow containing the gateway process:

Area: Spy Hill Line: UC96017 Flow: Sample

Disk Data Input <- Input Dataset

Matlab / ProMAX gateway

Disk Data Output -> Output Dataset

The process called “Matlab / ProMAX Gateway” has the following parameter
selection menu:

Matlab/ProMAX Gateway

Trace data flow out of Matlab into Matlab both

Gateway ID default

Other users allowed access Yes No

Detailed log Yes No

The first parameter selects the direction of data flow. If Matlab were being used to
generate synthetic data, then one might want to specify that the data was flowing out of
Matlab. In most cases Matlab would use to perform an operation that modifies trace
data so “both” is typical choice.

The Gateway ID parameter can be used to differentiate between multiple gateways
running concurrently. Within Matlab one can select from multiple gateways using this
identifier. By default value of Gateway ID, both in Matlab and ProMAX is “default”.
This means that most users do not need to concern themselves with modifying the
gateway ID.

1 ProMAX utilizes another source of data called “parameter tables” for storing such
data as velocity fields or trace kills. A future version of the gateway will give access to
these tables.

A Matlab interface to ProMAX

CREWES Research Report — Volume 8 (1996) 11-3

Matlab user interface

The Matlab side of the gateway consists of the functions in table 1.

Matlab function Operation performed

promaxopen Opens the Matlab side of the gateway

promaxclose Closes the Matlab side of the gateway and causes the ProMAX
flow to exit.

promaxgettrc Reads a trace from ProMAX via the gateway. Returns a vector
of trace data and (optionally) a vector of trace header words.

promaxputtrc Sends a trace to ProMAX via the gateway. It must be supplied
with a vector of trace data and a vector of trace header words.

promaxdbget Obtain a vector of values from the ProMAX database.

promaxdbput Send a vector of values to be stored in the ProMAX database.

promaxhdrindex Returns the index of a named header word so it can be located
in a vector of trace header words.

Table 1. Matlab functions used to interact with ProMAX via the Matlab / ProMAX gateway.

The best way to describe these functions is by example. The user would start Matlab
from the Unix command line:

$ matlab

To gain access to the gateway, one calls promaxopen(). This function returns a
gateway handle. The gateway handle is like any other Matlab handle and serves to
identify the gateway in future calls to gateway routines.

>> gw = promaxopen();

Matlab/ProMAX Gateway is open Gateway-id: default
ProMAX host: kalimba
Gateway created: 21-Aug-1996

To obtain trace data, one calls promaxgettrc(). This returns the next available trace
from the ProMAX processing flow.

>> trace = promaxgettrc(gw);

If we want to get the header words associated with trace data a second output
parameter must be supplied be used when calling promaxgettrc().

>> [trace, header] = promaxgettrc(gw);

Bland

11-4 CREWES Research Report — Volume 8 (1996)

The resulting vector of header word values can be in any order, so one must always
find out the index specific header words, to obtain a specific header word value2.

>> rec_x_index = promaxhdrindex(gw, 'REC_X');
>> rec_x = header(rec_x_index)
rec_x = 101.5

Using these three functions calls, it is now possible to show how a simple process
could be written. Consider this example, which performs an offset-dependent median
filter smoothing on a trace by trace basis3. The Matlab function “medfilt1” performs a
median filter operation on the supplied vector and returns the filtered vector. The first
parameter to medfilt1 is the input vector and the second parameter is the number of
elements to include in the median. The variable “factor” is the number of samples to
include in the median per meter of shot/receiver offset.

factor = 1/20; % one element per 20 meters of offset
gw = promaxopen; % open the gateway to ProMAX
% Find the index to the absolute offset header word
aoffset_index = promaxhdrindex(gw,’AOFFSET’);
% get the first trace and header vectors
[trace, header] = promaxgettrc(gw)
while size(trace, 1) > 0 %loop until the last trace

aoffset = header(aoffset_index);
nElements = int(aoffset * factor)
trace = medfilt1(trace,nElements);
promaxputtrc(gw, trace, header);
[trace, header] = promaxgettrc(gw)

end

In addition to working with trace data, the gateway can also be used to read or write
database values. In order to read a set of database values one calls promaxgetdb(), and
supplies all the database selection parameters (order, type, and parameter-name). For
example, to obtain a vector of surface locations in the X coordinate one would type:

>> xlocations = promaxgetdb(gw,’SRF’,’GEOMETRY’,’REC_X’);

A simple basemap could be generated by obtaining the Y locations and plotting them
against the X locations:

>> ylocations = promaxgetdb(gw,’SRF’,’GEOMETRY’,’REC_Y’);
>> plot(xlocations,ylocations);

One could modify this vector, and then write it back to the database using
promaxputdb().

When finished using the gateway, or when no more trace data are received, one
must always close the gateway via the promaxclose function:

>> promaxclose;

2 Due to the way ProMAX works, one must call promaxhdrindex() before calling
promaxgettrc().
3 This algorithm serves as an example only and is of dubious value for seismic
processing.

A Matlab interface to ProMAX

CREWES Research Report — Volume 8 (1996) 11-5

This function deallocates resources associated with the gateway and causes the
ProMAX flow to terminate.

IMPLEMENTATION

The Matlab / ProMAX gateway was implemented using the Remote Procedure Call
(RPC) network programming paradigm. RPC is a method for network programming
which is ideally suited for client/server applications such as this one. The use of a
network communication protocol for interprocess communication means that the client
(Matlab) and the server (ProMAX) do not have to run on the same system.

A feature of RPC is that the dissimilar machines may be on either end of the
gateway, yet all interchanged data will remain intelligible. In the case of the Matlab /
ProMAX gateway, one could run ProMAX on a system with one kind of byte ordering
(such a Sun Ultrasparc running Solaris) and run Matlab on a system with a different
kind of byte ordering (such as a Intel Pentium running Linux).

In order to establish a connection between the client and server a registry is needed
for RPC connection information. The chosen solution was to create a file in the user’s
home directory (called .mpgate). Each time the Matlab / ProMAX gateway module
starts in ProMAX, it writes a line to this file. The line contains the gateway identifier
(gateway ID) the RPC connection information (hostname, RPC program number and
RPC version number) and the time of day. When a call to promaxopen() is made within
Matlab, promaxopen scans the user’s .mpgate file for the newest entry with a matching
gateway ID. Having found an entry, it then uses the associated RPC connection
information to initiate an RPC client/server connection. If multiple systems are
networked such that users’ home directories are shared via NFS, this scheme allows
Matlab and ProMAX to operate on different systems with complete transparency to the
end user. In the unlikely event that both systems are networked but do not use common
home directories, the user would have to transfer the .mpgate file from the ProMAX
system to the Matlab system (possibly using the “rcp command”) prior to calling the
promaxopen() function.

A large part of the programming effort was spent in reconciling the difference
between data storage types using in Matlab and ProMAX. Matlab stores all variables as
double-precision floating point numbers whereas ProMAX uses a mixture of data
types. In ProMAX trace data are stored as single precision floating point, while trace
headers and database parameters may be integers, single or double precision floating
point numbers. The solution was to convert all values to double precision while within
Matlab, and converting them back to their ProMAX data types when in ProMAX. This
required an element of bookkeeping and a faith in the fact that integers can be converted
to double-precision floating point and back to integer without loss of accuracy. To
reduce the amount of network traffic, conversion to double precision is performed after
the transfer of data, and conversion from double precision is performed before the
transfer of data. Since double precision data is twice the size of single precision data,
only half as much data must be transferred over the network using this technique.

Future work

The Matlab / ProMAX gateway has already proven to be a useful tool for ad-hoc
investigations. The current implementation provides only the minimum number of
functions to be useful. When time permits, the following functions will be added to the
Matlab function library:

Bland

11-6 CREWES Research Report — Volume 8 (1996)

promaxgetens Obtain an ensemble (2-D matrix) of trace data

promaxputens Return an ensemble of trace data to ProMAX.

The promaxgetdb and promaxputdb functions will be augmented to operate on
subsets of the database. The current implementation becomes too slow when used with
large databases such as those associated with 3-D surveys.

The Matlab / ProMAX gateway is somewhat inefficient since all the data must be
transmitted between distinct Unix processes using slow network protocols. It is
feasible to incorporate the Matlab engine directly into a ProMAX module. Although this
would remove the ability to perform interactive operations from within Matlab, it would
allow Matlab functions to run much faster. It may be worthwhile to develop of a second
type of Matlab / ProMAX process module for non-interactive high speed processing
using this scheme.

One of the drawbacks of using Matlab as a ProMAX process is that Matlab cannot
control the execution of the ProMAX flow. While in a Matlab session, there is no way
to stop the ProMAX flow or restart it. We plan to investigate how we might implement
this valuable feature.

CONCLUSION

The Matlab / ProMAX gateway is already being used as an investigative tool by
members of the CREWES Project and has proven its usefulness. With the addition of
the discussed enhancements, the gateway will be even easier to use. We hope this leads
to the development new ideas and improved geophysical techniques.

REFERENCES

Dufour, J., and Foltinek, D.S., 1996, Plus-Minus time analysis method and its implementation:
CREWES Research Report 8.

