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ABSTRACT

A nonstationary generalization of the convolution integral is presented. Called
nonstationary convolution, it retains the interpretation of forming the scaled
superposition of impulse responses while allowing those impulse responses to become
arbitrary functions of time or position. A similar, alternate formulation is also given
which also has stationary convolution as a limiting form but does not have the
immediate interpretation of forming the superposition of impulse responses. Called
nonstationary combination, this alternate form is closely approximated by the common
practice of forming a nonstationary result by interpolation between a set of stationary
filtered results. Both filter forms can be re-expressed in a dual time-frequency domain
where nonstationary convolution becomes a generalized forward Fourier integral and
combination is a generalized inverse Fourier integral. It is shown that pseudodifferential
operators can be considered as a nonstationary combination filter whose filter form is a
spectral polynomial. It is then argued that nonstationary convolution can be inverted by
inverting the dual-domain filter function and applying it as a nonstationary combination
and vice-versa. Finally both nonstationary filter forms are re-expressed in the full
Fourier domain in a result which generalizes the convolution theorem. The possible
applications of this methodology are illustrated with examples from wave propagation
and deconvolution.

INTRODUCTORY CONCEPTS

The digital filtering of sampled data is arguably one of the most important processes
in geophysical data processing. Filtering refers to the use of the convolution integral to
convolve or filter one signal with another. Usually one signal is called the filter and the
other is the input though the symmetry of the convolution integral makes this
designation arbitrary. Conceptually, convolution is most intuitively described by
replacement. This refers to the process of replacing each point on the input signal by a
scaled copy of the filter. The scalar is the input point itself and the output is the
superposition of all such scaled filter copies.

In a fundamental result called the convolution theorem, the convolution integral can
be computed by Fourier transforming the two signals, multiplying their spectra, and
inverse Fourier transforming. This direct link between the theory of Fourier transforms
and convolution, together with the numerical advantages of the fast Fourier transform
(FFT) algorithm, has lead to very efficient convolution methodologies.

There are at least two reasons for the overriding importance of convolution, one very
practical and one quite theoretical. First, the practical reason is the suppression of
random or coherent noise (or, alternatively, the enhancement of signal). Typically
signal is bandlimited by the source characteristics while random noise may be
broadband. Also coherent noise may contaminate only a portion of the signal band. In
both cases, filters may be designed to reject noisy portions of the spectrum while
retaining a usable portion of the signal.

The theoretical reason lies at the heart of mathematical physics. Physical phenomena
are held to be well modeled by a few linear partial differential equations (PDE’s). For
example, elastic wave propagation is described by the elastic wave equation and this
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can usually be reduced to a set of scalar wave equations for the elastic potentials.
Similarly, the gravitational potential is modeled by Laplace’s or Poisson’s equations.
Also of interest is the diffusion equation for the description of heat flow and the scalar
wave equation for acoustic waves. A powerful solution technique for any linear PDE,
known as Green’s function theory, turns out to be a convolution or filtering process.
Essentially, the theory states that if the solution to the PDE for an impulsive source can
be found, then the solution for a more general, distributed, source is obtained by
filtering the impulsive solution. The impulsive solution is called a Green’s function (or
impulse response) and the distributed source becomes the filter.

An intuitive example of this Green’s function theory is the propagation of waves
through the application of Huygen’s principle (Figure 1a). This refers to the fact that a
wavefront can be stepped forward in time (i.e. extrapolated) by considering each point
on the wavefront to be an impulsive source and the new wavefront is synthesized from
the superposition of all such sources. Thus the wave is stepped forward by filtering the
input wavefield with an appropriate Green’s function, which may be called a Huygen’s
wavelet. (A complete mathematical description of Huygen’s principle may be found in
Morse and Feshbach, 1953, p847). The extrapolated wave is constructed as the linear
superposition of all possible Huygen’s wavelets, each one representing an expanding
spherical wavefront about a point on the input wavefield. Clearly, the radius of the
Huygen’s wavelet must depend on the local wave propagation velocity and can only be
constant if velocity is constant. In the constant velocity case, this process is a multi-
dimensional convolution by replacement. In the variable velocity case, it is still a linear
superposition of Huygen’s wavelets but each varies its radius according to the local
wavespeed (Figure 1b).

TIME DOMAIN FORMS OF NONSTATIONARY FILTERING

The foregoing discussion leads quite naturally to the need for nonstationary filtering.
In order to understand what a nonstationary filter is, we must first clearly understand a
stationary filter. Most filtering processes use stationary filters because that is all that the
ordinary convolution integral allows. In the case of the convolution of a stationary filter
a(t) with a function h(t) to yield g(t), the convolution integral is

  
g(t) = a(t – τ)h(τ)dτ

– ∞

∞

 . (1)

Note that the filter appears dependent only on “lag time” t-τ. If we consider the case
when h(τ) = cδ(τ−το) (where c is a constant and δ is the Dirac delta function), then
g(t)=ca(t-τo). This deceptively simple result has far reaching effects and is the basis for
most numerical convolution algorithms. In words, if the input to a convolution is an
impulse of magnitude c at time το, then the output is the filter function scaled by c and
centered at το. Thus the filter function is scaled and translated (shifted to το ) but is
otherwise unchanged. For this reason, a(t) is often called the “impulse response” of the
filter since it is the result when h(τ) = δ(τ). This result generalizes to arbitrary input
functions by considering them to be the superposition of a set of impulses and captures
the essence of a stationary filter. Simply put, a stationary filter keeps the filter’s form
invariant and replaces each point on the input function with a scaled copy of the filter.
The output is the superposition (summation) of all such scaled and shifted filter
functions.

Returning to the Huygen’s principle discussion from the introduction, the Green’s
function (or filter or Huygen’s wavelet) represents an expanding wavefront of radius
v∆t where v is the velocity and ∆t is the extrapolation time step. If v is a constant, then
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the spherical wavefront will have a constant radius no matter where on the input
wavefront it is placed. Thus, in this case, stationary convolution is an appropriate
mathematical tool to form the required scaled superposition of Huygen’s wavelets.
However; when velocity is allowed to vary from point to point, as it obviously does in
the earth, then the radius of the wavefront must vary and stationary convolution cannot
provide the needed flexibility. A mathematical process which can form a scaled
superposition of Huygen’s wavelets (or any other filter) while allowing the wavelet
radius to depend on the local velocity at the point of replacement is called a
nonstationary convolution (Figure 1b).

A nonstationary convolution integral is needed which symbolizes the nonstationary
filtering processes just discussed. It must allow the filter to depend on both input and
output time and not merely their difference. Additionally, it must retain the meaning of
replacing each input point with an impulse response and should approach equation (1)
in the “stationary limit”. To deduce a more general form, we can expand the role of the
impulse response discussed previously. Now, when an impulse h(τ) = cδ(τ−το)
arrives, we would like to have a response something like g(t) = ca(t-τo, τo). That is, the
response changes according to both the lag time and the impulse time. A simple
generalization of equation (1) which achieves this is

  
g(t) = a(t – τ, τ)h(τ)dτ

– ∞

∞

 . (2)

Thus we have generalized the concept of the impulse response function in equation (1)
to a two dimensional function a(u,v), where u and v are generalized time variables. The
interpretation of a(u,v) is that it prescribes the response of the linear system, without
the causal delay, to an impulse arriving at time v. This is convenient because it allows
the impulse responses at different times to be directly compared (Figure 2) and we
incorporate the causal delay into the integration form of equation (2). The stationary
limit is found by letting the v dependence become constant. Figure 3 illustrates the
discrete approximations to equations (1) and (2) being computed as matrix-vector
multiplications. In the Figure 3a, the stationary impulse response matrix of Figure 2a
has had each column delayed to place the filter start-time on the main diagonal (creating
a Toeplitz matrix). The resulting matrix multiplies the input signal to complete the
convolution of equation (1). In Figure 3b, the nonstationary convolution is also a
matrix operation but the nonstationary convolution matrix is formed by delaying each
column of the impulse response matrix of Figure 2b and no longer has the Toeplitz
symmetry.

Equation (2) is called nonstationary convolution because it meets all of the criteria
which were required: it is linear, it allows the filter to depend on both input time and lag
time, it has equation (1) as its stationary limit, and it forms the scaled linear
superposition of impulse responses. However, there is another similar linear form
which is of considerable interest because it appears in many data processing algorithms.
Called nonstationary combination, it is given by

  
g(t) = a(t – τ, t)h(τ)dτ

– ∞

∞

 . (3)

Nonstationary combination differs from convolution in that it maps the v dependence of
a(u,v) into output time rather than input time. Though this difference vanishes in the
stationary limit, it can be dramatic for highly nonstationary filters. The response of
equation (3) to h(τ) = cδ(τ−το) is     g    (t)= ca(t-τo, t) rather than g(t) = ca(t-τo, τo) for
equation (2). Given the interpretation of a(u,v) mentioned above, equation (3) cannot
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be regarded as forming the superposition of impulse responses since the v dependence
is not mapped to the arrival time of the impulse. As will be demonstrated in the next
section, nonstationary combination is related to the common practice of approximating a
nonstationary filter by computing a few stationary “filter panels”, using different filter
parameters for each panel, and then interpolating a combined result from the panels. In
fact, nonstationary combination is exactly formed by slicing through an exhaustive set
of filter panels as shown in Figure 4.

Though applying the same filter form as a combination or a convolution can give
very different results, it is also true that a convolution filter form can always be
constructed which will give identical results to a combination filter and vice-versa. That
is, if h(τ) is filtered with a(u,v) using equation (3) to get     g    (t) it is always possible to
find a filter,    a   (u,v), which can be applied with equation (2) to yield the identical result
    g    (t). Therefore, though combination does not form the linear superposition of impulse
responses of the filter a(u,v) in equation (3), it does form the linear superposition of the
impulse responses of a related quantity    a   (u,v).

DUAL-DOMAIN FORMS OF NONSTATIONARY FILTERING

The two forms of nonstationary filtering introduced above are very closely related.
Both are linear and both have stationary convolution as a limiting form. However;
when a nonstationary impulse response function, a(u,v), is applied with equation (2)
or, alternatively, with equation (3) the results can differ strongly. To understand this
better, we will now derive dual-domain forms for both operations. The name is meant
to imply that the domain of the signal changes during the application of the filter, either
from time to frequency or the reverse. First we define forward and inverse Fourier
transforms:

  
H(η) = h(τ)exp –i2πητ dτ

– ∞

∞

(4a)

  
h(τ) = H(η)exp i2πητ dη

– ∞

∞

(4b)

  
G(f) = g(t)exp –i2πft dt

– ∞

∞

(5a)

  
g(t) = G(f)exp i2πft df

– ∞

∞

 . (5b)

Note that the spectra of g and h are G and H and that, corresponding to the input time τ
is the input frequency η while the output time, t, has frequency f. It is also emphasized
that these expressions are all ordinary Fourier transforms. Most other filtering
techniques which are capable of nonstationary effects use a nonstationary transform
such as the wavelet transform, the Gabor transform, or the short-time Fourier
transform (see Margrave, 1996 or 1998, for a discussion). The theory presented here
differs from these approaches in that it uses ordinary Fourier transforms throughout.
That is, the signal to be filtered is never decomposed on a two-dimensional time-
frequency (or shift-dilation) grid.

The dual-domain form of nonstationary convolution follows by using equation 5a to
take the forward Fourier transform of equation (2)
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G(f) = a(t – τ, τ)h(τ)dτ

– ∞

∞

exp –i2πft dt
– ∞

∞

 . (6)

The order of integration can be reversed in equation (6) under quite general conditions
which are discussed in Margrave (1996 or 1998). This gives

  

G(f) = a(t – τ, τ)exp –i2πft dt
– ∞

∞

h(τ)dτ
– ∞

∞

 . (7)

Now, the inner integral can be evaluated by letting u = t-τ to get

  
G(f) = α(f,τ)h(τ)exp –i2πfτ dτ

– ∞

∞

(8)

where

  
α(p,v) = a(u,v)exp –i2πpu du

– ∞

∞

 . (9)

In equation (9), u and v are the generalized times mentioned before and p is a frequency
corresponding to u. At first, it may seem odd to write this result in terms of such
generalized quantities instead of the f and τ required in equation (8) but this will allow
the same expression to be used later for nonstationary combination much as a(u,v) was
used in both equations (2) and (3).

Equation (8) is the desired dual form for nonstationary convolution and it uses
α(p,v) with p mapped to f and v to τ. First note that if the v dependence of α(p,v)
becomes constant (i.e. the stationary limit) then α(f) can be taken outside the integral
and we have the ordinary forward Fourier transform of h(τ) times a filter function α(f).
That is, we get the expected stationary result that the filter is applied by multiplying the
spectra. More generally, α(p,v) depends strongly on both p and v and equation (8)
shows that it is applied simultaneously with the forward Fourier transform of the input
function h(τ). the final output signal g(t) is obtained as the ordinary inverse Fourier
transform of G(f) as in equation (5b).

As defined by equation (9), α(p,v) is the ordinary Fourier transform over the first
time coordinate of the impulse response function and is called the nonstationary transfer
function. That is, α(p,v) gives the Fourier spectrum of the impulse response for each
impulse arrival time v. There are few restrictions on the nature of α(p,v) so that nearly
arbitrarily complex spectral functions can be applied and they may vary arbitrarily with
time. (The only restrictions required are those sufficient to make the integrals converge
and to allow their interchange.) Since equation (9) is an ordinary Fourier transform, it
is easily inverted to give a(u,v) in terms of α(p,v).

Figure 5 illustrates the application of stationary and nonstationary filters through the
discrete equivalent matrix operations for equation (8).

The dual-domain form of nonstationary combination is derived by substituting for
h(τ) in equation (3) its expression as an inverse Fourier transform of H(η) as given by
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equation (4b). The derivation is similar to that already given and involves a reversal of
the order of integration and a change of variables. The details may be found in
Margrave (1996 or 1998) and the result is

  
g(t) = α(η,t)H(η)exp i2πηt dη

– ∞

∞

 . (10)

This result contrasts strongly with equation (8). In both cases the same nonstationary
transfer function is involved; however in equation (8) it is applied simultaneously with
the forward Fourier transform while in equation (10) it is with the inverse Fourier
transform. Furthermore, note that the integration in equation (8) involves the v
dependence of α(p,v) while equation (10) integrates over the p dependence.

These dual-domain forms are conceptually rich and offer great flexibility in the
design of filtering algorithms. Considerable insight can be gained into the distinction
between the convolution and combination forms by analyzing the simple case

  
α(p,v) =

α1(p), v < 0

α2(p), v ≥ 0
 . (11)

Here α(p,v) is composed of two stationary filters, discontinuously juxtaposed at v = 0.
First, compute nonstationary convolution from equation (8)

  
G(f) = α1(f) h(τ)exp –i2πfτ dτ

– ∞

0

+α2(f) h(τ)exp –i2πfτ dτ
0

∞

 . (12)

Now define two window functions

  
Ω1(τ) =

1, τ < 0
0, τ ≥ 0

 and 
  

Ω2(τ) =
0, τ < 0
1, τ ≥ 0;

 . (13)

Using these window functions, equation (12) can be rewritten as

  
G(f) = α1(f) Ω1(τ)h(τ)exp –i2πfτ dτ

– ∞

∞

+α2(f) Ω2(τ)h(τ)exp –i2πfτ dτ
– ∞

∞

(14)

in which the integrals are now ordinary forward Fourier transforms. If we let FT
denote a forward Fourier transform and IFT an inverse Fourier transform, then the final
filtered result in the time domain is

  
g(t) = αk(f) Ωk(τ)h(τ)FT

τ → f
Σ

k = 1

2

IFT
f → t

 . (15)

This result has an obvious generalization to the case where α(p,v) consists of any
number of piecewise constant segments. In this case, it shows that nonstationary
convolution can be formed from a set of stationary operations by windowing the input
dataset to select that portion corresponding to each stationary filter segment, filtering the
windowed segment, and superimposing the results. (Since the inverse Fourier
transform is linear, the summation and the IFT can be interchanged in equation (15).)
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Now consider the computation of nonstationary combination with equation (10) for
the filter form of equation (11). In this case, equation (10) becomes

  

g(t) =
α1(η)H(η)exp i2πηt dη

– ∞

∞

, t < 0

α2(η)H(η)exp i2πηt dη
– ∞

∞

, t ≥ 0;
 . (16)

Using the window functions of equation (13), equation (16) can be written as a single
specification

  
g(t) = Ω1(t) α1(η)H(η)exp i2πηt dη

– ∞

∞

+ Ω2(t) α2(η)H(η)exp i2πηt dη
– ∞

∞

(17)

and this result can be written in a form similar to equation (15) as

  
g(t) = Ωk(t) αk(η) h(τ)FT

τ → η
IFT
η → t

Σ
k = 1

2

 . (18)

As before, this result can easily be extended to an arbitrary number of piecewise
constant filter segments.

Equations (15) and (18) offer an intuitive understanding of the essential difference
between nonstationary convolution and combination. Suppose that the nonstationary
filter specification can be written as piecewise constant (in time), that is, as a countable
number stationary filter spectra defined over time zones. Then define a set of window
functions, one for each stationary filter such that the window is unity over the
specification zone of the filter and zero elsewhere. Then, a nonstationary convolution is
computed by windowing the input dataset, filtering each windowed result, and
superimposing them. In contrast, a nonstationary combination proceeds by filtering the
input dataset (without windowing) with each filter specification, windowing the filtered
results, and superimposing. Imagine an input dataset that contains a single live sample
(an impulse) which falls in the middle of the jth filter specification zone. Suppose
further that the impulse responses of each stationary filter are very long in time such
that they easily span the specification zones of many other filters. The nonstationary
convolution will simply be the impulse response of the jth stationary filter since only
the jth window applied to the input data will contain nonzero energy. However;
nonstationary combination gives a much different answer. Since the stationary filters in
equation (18) are applied before windowing, each will produce its own impulse
response of the single live input sample. The application of windows after-the-fact will
result in a composite “impulse response” which changes discontinuously at each filter
specification boundary. This result is even more general than this analysis indicates.
Nonstationary convolution offers a powerful method of solution to physics problems
which is superior to nonstationary combination because the former creates a scaled
superposition of impulse responses while the latter does not.

A general property of a combination filter, suggested by the previous paragraph, is
that if α(p,v) has any discontinuities in the time direction (v), these will result in
discontinuities in the filtered output. Thus it is possible to produce a completely abrupt
change in the time domain output. Nonstationary convolution cannot show this
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behavior since the continuous superposition of impulse responses will smooth over any
filter discontinuities.

As an example, the method of wavefield extrapolation by phase shift (Gazdag,
1978) can be straight forwardly extended to nonstationary phase shift (NSPS)
(Margrave and Ferguson, 1997) by simply replacing v by v(x) (v is velocity) in the
constant velocity expression and formulating it correctly as convolutional expression.
The same nonstationary wavefield extrapolator, when applied as a nonstationary
combination leads to the method of PSPI (Gazdag and Squazerro, 1984). Figure 6
shows a comparison between these approaches. In Figure 6a is a velocity field which
varies rapidly with lateral position but is constant vertically. Figure 6b is a row of
impulses which will be extrapolated through a single 50m vertical step with both
methods. The NSPS result (Figure 6c) can be seen to be a superposition of hyperbolic
impulse responses while the PSPI result (Figure 6d) is relatively chaotic.

RELATIONSHIP WITH PSEUDODIFFERENTIAL OPERATORS

One of the most enduring reasons for the utility of Fourier analysis is its ability to
reduce constant-coefficient PDE’s to ordinary differential equations or even simple
algebraic equations which are then solved directly. The use of Fourier theory has
therefore established a great many elegant solutions to physical problems but with the
limitation that they must be described by a constant coefficient PDE. Well known
examples in the geophysical literature are the F-K migration theory of Stolt (1978) and
the phase shift extrapolation method of Gazdag (1978).

The theory of pseudodifferential operators was developed over the last several
decades as an extension of the concepts of Fourier analysis to the solution of variable
coefficient PDE’s. (For summaries see Stein, 1993, or Taylor, 1996.) As an example
of a pseudodifferential operator, consider one of relevance to wave propagation such as

   
v2(x)

∂2

∂x2
ψ(x) = v2(x)

∂2

∂x2
φ(k)exp i2πkx dk

– ∞

∞

= α(x,k)φ(k)exp i2πkx dk
– ∞

∞

(19)

where

  α(x,k) = i2πkv(x)
2 (20)

In equation (19), the first step applies the differential operator v2(x)∂2/∂x2 to a
wavefield, ψ(x); the second step expresses the wavefield as an inverse Fourier
transform of its spectrum, φ(k); and the last step moves the differential operator inside
the Fourier integral. The last term is called a pseudodifferential operator and is a
prescription for the operator application in the Fourier domain. α(x,k) as given by
equation (20) is called the symbol of the differential operator.

Pseudodifferential operators are easily defined for differential operators which are
arbitrary polynomials of partial derivatives with variable coefficients in any number of
dimensions. The resulting forms are all mathematically similar to equation (19) and the
symbols of such operators generally become algebraic polynomials in k with
coefficients which depend on x. Comparison of equation (19) with equation (10)
shows that a pseudodifferential operator is applied with a nonstationary combination
filter whose form is an algebraic polynomial in the spectral variables. This observation
establishes a direct link between nonstationary filter theory and the theory of
pseudodifferential operators. A forward pseudodifferential operator is a nonstationary
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combination filter of polynomial form in the spectral variables. Indeed, it seems that all
pseudodifferential operators and the related Fourier integral operators can be viewed as
nonstationary filters.

On the contrary, it is not always fruitful to consider nonstationary filters as
pseudodifferential operators. Many nonstationary filters are designed for noise
reduction, signal shaping, or other purely data processing tasks. Even if such filters
could be expressed as spectral polynomials, the corresponding differential operators
would have little meaning. Furthermore, though the combination form of nonstationary
filters emerges directly in pseudodifferential operator theory, the convolution form does
not. Though, as mentioned above, any combination operator has an equivalent
convolutional form, the recognition of the two distinct forms is a strength of
nonstationary filter theory. It allows Green’s function or Fourier results from stationary
theory to be extended to the nonstationary case with relatively little effort compared to
the pseudodifferential operator approach.

Pseudodifferential operator theory can generate more accurate solutions to complex
physical phenomena than the nonstationary filter approach. The essential assumption in
the latter case is that a solution to a variable coefficient PDE can be constructed from an
appropriate superposition of solutions from constant coefficient PDE’s, whose
coefficients are “frozen” at local values. This implicitly assumes that local gradients of
coefficients do not affect the solution. In principle, the pseudodifferential operator
approach does not have this limitation though this is purchased at the expense of very
complex mathematics. The aforementioned extension of the phase shift method on
wavefield extrapolation to nonstationary phase shift is a case in point. This advance is a
straight forward application of nonstationary filtering and offers great promise. A
similar formulation, reached by pseudodifferential operator methods has yet to be
published. On the other hand, de Hoop (1996) uses pseudodifferential operators to
reach a very general solution to the 3-D acoustic scattering problem assuming only that
material parameters are smoothly variable (infinitely differentiable) functions of
position. Though a major advance, the mathematical complexity of this work has
slowed its acceptance. Note also, the nonstationary filtering approach does not require
smoothly variable media.

NONSTATIONARY INVERSE FILTERS

Just as nonstationary filter theory is a direct generalization of stationary concepts, it
appears that inverse filters can be formulated through suitable generalizations of
stationary ideas. This promising avenue has just begun to be explored. As an example,
it seems reasonable to expect that if a forward filter is applied by a convolutional form
then the inverse will be a combinational form and vice-versa. Consider the possibility
that the inverse to equation (8) might be found by

  
h(τ) = α– 1(f,τ)G(f)exp i2πfτ df

– ∞

∞

 . (21)

Substitution of equation (8) for G(f) in this expression gives

  

h(τ) = α– 1(f,τ) α(f,u)h(u)exp –i2πfu du
– ∞

∞

exp i2πfτ df

– ∞

∞

 . (22)

Interchanging the order of integration leads to
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h(τ) = h(u)∆(u,τ)du

– ∞

∞

(23)

where

  
∆(u,τ) = α(f,u)α– 1(f,τ)exp i2πf(τ – u) df

– ∞

∞

(24)

is the resolution kernel of the possible inversion. Clearly, we would like to have
∆(u,τ)=δ(τ-u) for a perfect inversion and it is appropriate to inquire about whether this
is possible. If α(f,u)α -1(f,τ)=1 for all u and τ then ∆ does yield the desired Dirac delta
function; however, we cannot expect this condition to be satisfied for all times with a
nonstationary filter. It seems apparent that as long as α(f,u)α-1(f,τ) changes much more
slowly with f than does exp(i2πf(τ-u)) then ∆(u,τ) can be expected to be very delta-
like. Note that, for u=τ, αα -1 is unity provided only that α -1 exists from which it
follows that equation (24) has a singularity at u=τ. Thus it is likely that the resolution
kernel is very sharply peaked, for quite general α(f,u), and that equation (23) is a
useful inversion formula.

More study on the issue of inverse filters is required. Among the many questions to
be answered are: What conditions are required to guarantee that equation (23) is a valid
(or at least useful) inverse? What is the relation between the approach here and the
established methods for Fredholm integral equations? Is nonstationary combination
sufficiently stable to be used in a robust inversion of noisy data? Would a convolution-
based inversion of a convolutional expression be more stable and more useful?

As a first step, Schoepp and Margrave (1997) have demonstrated that robust and
useful deconvolution routines can be built based on these ideas. This approach merges
the ideas of stationary frequency domain deconvolution and inverse Q filtering. The
result is an algorithm which can deconvolve the source waveform, compensate for both
the amplitude and phase effects of absorption, and address a wider class of multiples
than conventional deconvolution. Moreover, it does not require the precise knowledge
of Q that inverse Q filters typically need. Such a nonstationary deconvolution approach
promises higher resolution seismic images with a stationary embedded wavelet and
more meaningful reflection amplitudes.

FOURIER DOMAIN EXPRESSIONS

These nonstationary filter forms, convolution and combination, can be moved
entirely into the Fourier domain. The derivations are similar to that used above in the
dual-domain expressions and are given completely in Margrave (1996 and 1998).
Simply put, nonstationary convolution can be moved entirely into the Fourier domain to
give

  
G(f) = H(η)A(f,f– η)dη

– ∞

∞

(25)

where
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A(p,q) = α(p,v)exp i2πpu dv

– ∞

∞

α(p,v) = a(u,v)exp i2πpu du
– ∞

∞

 . (26)

Equation (26) defines the frequency connection function, A(p,q), so-called because it
determines the connection or mapping between input and output frequency. A(p,q) may
be computed from α(p,v) by an ordinary Fourier transform over v or, equivalently
from a(u,v) by a 2-D Fourier transform over u and v.

The comparable expression for nonstationary combination in the Fourier domain is

  
G(f) = H(η)A(η,f– η)dη

– ∞

∞

 . (27)

The subtle difference between equations (25) and (27) is very intriguing. Both can be
seen to be nonstationary filter forms which are mathematically similar to the time
domain expressions of equations (2) and (3). In fact, nonstationary convolution has a
combination form in the Fourier domain and vice-versa for nonstationary combination.

Figure 7 shows the discrete computations of both equation (25) and a stationary
filter as matrix operations. The filter being applied is the same as in Figures 3 and 5. In
the stationary limit, A(p,q) becomes A(p)δ(q) (Margrave, 1996 or 1998) and the
integral in equation (25) collapses to a scalar multiply. For a discrete application, this
becomes a diagonal matrix multiply as shown in Figure 7a. If the diagonal were
displayed in profile, the spectrum of the stationary filter would be seen. In the
nonstationary case, the filter matrix can have significant power everywhere, though it
will be diagonally dominant for a large class of quasi-stationary filters.

Comparing the matrices in Figures 3 and 7, we can appreciate that as the stationary
limit is attained, the convolution matrix becomes Toeplitz and the spectral matrix
becomes diagonal. In a general nonstationary setting, both matrices are non-Toeplitz
and potentially fully populated.

Equation (26), like equation (9) moves the nonstationary filter specification between
domains using ordinary Fourier transforms. As such, these equations can easily be
inverted and provides general prescriptions for moving a filter between domains. It is
usually preferable to design the filter in the dual-domain and then move it to the Fourier
or time domains for application.

CONCLUSIONS

The concept of convolution is important to data processing as a filter application
technique; but more importantly,  plays a central role in physical theory. The partial
differential equations of physics can have their solutions written as convolutions of an
impulse response with a source distribution. When the coefficients of the equation,
which are determined by the physical parameters of the medium, are constant, the
convolution is stationary and the solution is often exact. When the coefficients vary
with space or time, the convolution is nonstationary and the solution is generally
approximate.

Nonstationary filter theory provides a complete methodology for description and
application of nonstationary filters. Nonstationary convolution filters form the scaled
linear superposition of the impulse responses of the nonstationary filter. An alternate
filter form, nonstationary combination, still forms a linear superposition and reduces to
stationary convolution in the stationary limit; but does not form the superposition of the
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filter’s impulse responses. The theory provides arbitrary control of the time and
frequency characteristics of the nonstationary filter and applies the filter without having
to decompose the signal with a nonstationary transform. Only stationary Fourier
transforms enter into the theory.

When moved into the dual-domain of time-frequency, nonstationary convolution
becomes a generalized forward Fourier integral. This expression applies the
nonstationary filter simultaneously with the transformation of the signal from the time
domain to the frequency domain. Nonstationary combination is a generalized inverse
Fourier integral which moves the signal from the frequency to the time domain while
applying the signal.

For a nonstationary filter whose temporal variation is piecewise constant, the dual-
domain forms can be manipulated to produce an intuitive windowing technique of filter
application. Given a set of boxcar windows, one per filter segment with its passband
centered on the filter specification zone, nonstationary convolution windows the data,
filters each windowed subset, and superimposes the results. Nonstationary
combination, filters the unwindowed data with each filter segment, then windows and
superimposes. Applied to wavefield extrapolation, nonstationary convolution (NSPS)
produces a dramatically superior result to a combination approach (PSPI).

Pseudodifferential operators and Fourier integral operators are nonstationary
combination filters whose filter form is a polynomial in the spectral variables.
However, many nonstationary filters, such as those designed form purely data
processing reasons, are not usefully described as pseudodifferential operators.
Nonstationary filter theory can lead quickly to valuable nonstationary extensions of
known stationary solutions to physical problems. This is done under the assumption
that the a local solution is always well approximated by a stationary solution.
Pseudodifferential operator theory provides an approach capable of developing more
general solutions but at the expense of more complicated mathematics.

A useful approximate inverse filter to a nonstationary convolution is given by a
nonstationary combination with the inverse of the forward filter. Such an inversion
formalism can provide a sharp resolution kernel. Nonstationary deconvolution can be
formulated along these lines.

Nonstationary filters can also be re-expressed in the full Fourier domain. If the time
domain discrete filter matrix is Toeplitz (stationary) the Fourier domain filter matrix is
diagonal and vice-versa.

Nonstationary filter theory holds great promise for many geophysical problems.
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Fig. 1. A) Huygen’s principle in a constant velocity medium showing an input wavefront (time t)
and an output wavefront (time t+∆t). Every point on the input wavefront is replaced by a
Huygen’s wavelet of radius v∆t and the superposition of all such wavelets forms the output
wavefront. Mathematically, this process is a convolution. B) Huygen’s principle for a variable
velocity medium. The Huygen’s wavelets simply change their radius according to the local
velocity but all else is the same. This is a nonstationary convolution.
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Fig. 2. A) A stationary impulse response matrix. B) A nonstationary impulse response
matrix. In both matrices, each column contains the impulse response of a linear filter at
the time, u, denoting the arrival time of an impulse. In the stationary case, the impulse
response is constant with u while in the nonstationary case it varies, in this case
according to a constant Q model.
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Fig. 3. A) Stationary convolution as a matrix operation. The matrix a(t-τ) multiplies the
input column vector h(τ) to give g(t). B) Nonstationary convolution as a matrix
operation. In both cases, the convolution matrices are formed from the impulse
response matrices of Figure 2.
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Fig. 4. A nonstationary combination does not form the linear superposition of impulse
responses. Instead, it can be described as a slicing operation through an exhaustive set
of stationary filters, one for each output time.
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B) Nonstationary filtering in the mixed (t,f) domain

Fig. 5. A) Stationary convolution and B) nonstationary convolution represented in the
dual domain (f,τ) for the same case as Figure 3. The filter matrices show the spectrum
of the filter for each input time τ. In the stationary case the filter does not vary with τ,
while it varies systematically in the nonstationary case. The dual domain filtering
operation moves the data from time to frequency as it applies the filter. (These graphics
are not true matrix equations since they omit the depiction of a Fourier transform
matrix.)
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Fig. 6. Illustration of wavefield extrapolation as a nonstationary filtering operation. A)
The input velocity distribution. Velocity varies rapidly laterally but is constant
vertically. B) The input wavefield is a set of impulses designed to capture the impulse
response of the extrapolator. C) Output wavefield after extrapolation though a 50m
vertical step using NSPS (nonstationary phase shift). This method is a nonstationary
convolution and has clearly formed a superposition of impulse responses. D) Output
wavefield after extrapolation through though a 50m vertical step using generalized PSPI
(phase shift plus interpolation). This method is a nonstationary combination and has not
formed a clean superposition of impulse responses.
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B) Nonstationary Convolution in the Fourier Domain

Fig. 7. Stationary (A) and nonstationary (B) convolution in the Fourier domain for the same
filter as Figure 3. In both cases, the filter matrix multiplies the input spectrum to yield the
output spectrum. In the stationary case the filter matrix is purely diagonal with the Fourier
spectrum of the filter along the diagonal. This recreates the convolution theorem. In the
nonstationary case, the filter matrix contains off-diagonal power which describes the
nonstationarity of the filter.  This result generalizes the convolution theorem.


