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ABSTRACT

A nonstationary generalization of the convolution integralpiesented.Called
nonstationary convolution, it retainthe interpretation of forming the scaled
superposition of impulse responses while allowing those impetgeonses tbecome
arbitrary functions ofime or position. A similar,alternate formulation islso given
which also hasstationary convolution as bmiting form but does nothave the
immediate interpretation dbrming the superposition of impulseesponsesCalled
nonstationary combination, this alternate form is closely approximatéoebgommon
practice offorming a nonstationary result by interpolation between a set of stationary
filtered results. BotHilter forms can bere-expressed in a dual time-frequemigmain
where nonstationary convolution becomegeaeralizedorward Fourierintegral and
combination is a generalized inverse Fourier integral. It is shown that pseudodifferential
operators can be considered as a nonstationary combinatiowhibesefilter form is a
spectral polynomial. It is then argued that nonstationary convolution can be inverted by
inverting the dual-domain filter function and applying it as a nonstationary combination
and vice-versa. Finally both nonstationditfer forms are re-expressed ihe full
Fourier domain in a result whiapeneralizes the convolutiaheorem.The possible
applications of this methodologyre illustratedvith examples from wave propagation
and deconvolution.

INTRODUCTORY CONCEPTS

The digital filtering of sampled data is arguably one ofntizst importanprocesses
in geophysical data processing. Filtering refers to the uieeafonvolution integral to
convolve or filter one signal with another. Usually one signedited the filterand the
other is the inputthough the symmetry of the convolution integral makes this
designation arbitrary. Conceptually, convolution is mogtitively describedby
replacementThis refers to the process of replacearh point on the inpgignal by a
scaled copy othe filter. The scalar is the input point itself and the output is the
superposition of all such scaled filter copies.

In a fundamental resuttalled theconvolution theoregthe convolution integral can
be computed by Fourier transformitige two signals,multiplying their spectra, and
inverse Fourier transforming. This direct link between the theory of Fourier transforms
and convolutiontogether withthe numerical advantages of ttast Fourier transform
(FFT) algorithm, has lead to very efficient convolution methodologies.

There are at least two reasons for the overriding importance of convolution, one very
practicaland one quite theoreticdkirst, the practicalreason isthe suppression of
random or coherent noig@r, alternatlvely, the enhancement signal). Typically
signal is bandlimited by theource characteristics while random noisay be
broadband. Also coherent noise n@ntaminateonly a portion ofthe signalband. In
both casesfilters may bedesigned toreject noisy portions ofthe spectrum while
retaining a usable portion of the signal.

The theoretical reason lies at the hearnathematicaphysics.Physical phenomena
are held to be well modeled byfew linear partial differentiaequationdPDE’s). For
example elasticwave propagation is described the elasticwave equation and this
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can usually be reduced to a set of scalave equations fothe elasticpotentials.
Similarly, the gravitational potential is modeled by Laplace’sPoisson’s equations.
Also of interest is the diffusion equation fine description ofheatflow andthe scalar
wave equation for acoustwaves. A powerfubolution techniquéor anylinear PDE,
known as Green’functiontheory, turnsout to be a convolution or filteringrocess.
Essentially, the theory states that if the solution to the PDE fon@uisive source can
be found,then thesolution for amore general, distributed, source abtained by
filtering the impulsive solution. The impulsive solutioncalled aGreen’s function (or
impulse response) and the distributed source becomes the filter.

An intuitive example ofthis Green’s function theory ithe propagation ofvaves
through the application of Huygen'’s principle (Figli@). This refers tahe fact that a
wavefront can be stepped forwardtime (i.e. extrapolated) by considerirgach point
on the wavefront to be an impulsive source and the new wavefront is synthesized from
the superposition of all such sources. Thus the wave is stepped forwfteriog the
input wavefield with an appropriate Green'’s function, which magatled aHuygen'’s
wavelet. (A complete mathematical descriptiorHofygen’sprinciple may beound in
Morse and Feshbach, 1953, p84The extrapolatesvave is constructed dke linear
superposition o&ll possible Huygen’'s waveleteachone representing an expanding
spherical wavefront about a point ¢imee inputwavefield. Clearlythe radius of the
Huygen’s wavelet must depend on the local wave propagation velocity awdlgare
constant if velocity iconstant. Inthe constant velocitgase, this process isnaulti-
dimensional convolution by replacement. In the variable velaaige, it isstill a linear
superposition of Huygen'wavelets butachvaries its radius according tbe local
wavespeed (Figure 1b).

TIME DOMAIN FORMS OF NONSTATIONARY FILTERING

The foregoing discussion leads quite naturally to the need for nonstationary filtering.
In order to understand what a nonstationary filter is, we mustchgatly understand a
stationary filter. Most filtering processes use stationary filters because éiahet the
ordinary convolution integral allows. In the case of the convolution of a statibitery
a(t) with a function h(t) to yield g(t), the convolution integral is

00 = | at-on@er . )

Note that the filterappears dependent only tiag time” t-1. If we considerthe case

when hf) = ®(t-1,) (Where c is a constant arddis the Dirac deltdunction), then
g(t)=ca(tz,). This deceptively simple result has far reaching effects and isashie for
mostnumerical convolutioralgorithms. Inwords, ifthe input to a convolution is an
impulse of magnitude c at timg, then the output is the filter function scaled by ¢ and
centered at,. Thusthe filter function is scaled and translatgsthifted tot, ) but is
otherwise unchanged. For this reason, a(t) is often called the “impulse response” of the
filter since it is the resulivhen hf) = d(1). This result generalizes to arbitrary input
functions by considering them to be the superposition of a set of impulses and captures
the essence of a stationdityer. Simply put, astationary filterkeepsthe filter’'s form
invariant and replaces each point on the input funetitim a scaled copy dahe filter.

The output is thesuperposition (summation) dll such scaled and shiftedilter
functions.

Returning to théHuygen’sprinciple discussion fronthe introduction, the Green’s
function (orfilter or Huygen'swavelet) represents an expanding wavefront of radius
VAt where v is the velocity anil is the extrapolation time step. If v is a constémn
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the sphericalwavefront will have a constant radius neatter where onthe input
wavefront it is placedThus, inthis case,stationary convolution is an appropriate
mathematicatool to formthe required scaleduperposition of Huygen's wavelets.
However; when velocity is allowed to vary from point to point, as it obviously does in
the earth, then the radius of the wavefront must vary and stationary convolution cannot
provide the needed flexibility. Anathematicalprocess whichcan form a scaled
superposition of Huygen'savelets (or anyther filter) while allowing the wavelet
radius to depend omhe local velocity at thepoint of replacement iscalled a
nonstationary convolution (Figure 1b).

A nonstationary convolution integral is needekich symbolizeghe nonstationary
filtering processes justiscussed. Itnust allowthe filter to depend oboth input and
output time and not merely their difference. Additionally, it nmasain the meaning of
replacing each input point with an impulesponse and should approacuation (1)
in the “stationary limit”. To deduce a more general form, we can expand the role of the
impulse response discussed previously. Now, whenirapulse hf) = o3(1-1,)
arrives, we would like to have a response something like g(t) = ga(- Thatis, the
response changemsccording to boththe lag timeand the impulsdime. A simple
generalization of equation (1) which achieves this is

g(t) = f at—1, Dh(D)dr . 2)

Thus we have generalized the concept of the impalggonse function iequation (1)

to a two dimensional function a(u,v), where u and v are generalized time variables. The
interpretation ofa(u,v) isthat it prescribeghe response othe linearsystem,without

the causal delay, to an impulse arrivingirae v. This is convenient because it allows

the impulseresponses aifferent times to be directly comparé¢Bigure 2) and we
incorporate the causal delay into the integrafamn of equation(2). The stationary

limit is found by letting the v dependence becomenstant. Figure dlustrates the
discrete approximations to equatio(fs) and (2)being computed as matrix-vector
multiplications. In theFigure 3a,the stationary impulseesponsamatrix of Figure 2a

has had each column delayed to place the filter start-time on the main diagonal (creating
a Toeplitzmatrix). The resulting matrix multiplies the input signal ¢complete the
convolution of equatior{1). In Figure 3b,the nonstationary convolution @so a
matrix operation but the nonstationary convolution matrix is formed by delagciy
column of the impulseesponsematrix of Figure 2b and no longer hdise Toeplitz
symmetry.

Equation(2) is called nonstationary convolution because it megtsof the criteria
which were required: it is linear, it allows the filter to depend on both input time and lag
time, it hasequation (1) as itsstationary limit, and itforms the scaled linear
superposition of impulseesponses. Howevethere is another similar linear form
which is of considerable interest because it appears in many data processing algorithms.
Called nonstationary combination, it is given by

o) = f at—T, h(t)dr . 3)

Nonstationary combination differs from convolution in that it maps the v dependence of
a(u,v) into outputtime rather than input time. Though this differenanishes in the
stationary limit, it can belramaticfor highly nonstationary filtersThe response of
equation(3) to hf) = od(t-1,) is g(t)= ca(tz,, t) rather than g(t) =a(tt,, 1) for
equation(2). Giventhe interpretation o&(u,v) mentionedabove,equation(3) cannot
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be regarded as forming the superposition of imprésponsesince the v dependence

is not mapped to the arrivaine of theimpulse. Aswill be demonstrated in the next
section, nonstationary combination is related to the common practice of approximating a
nonstationary filter by computingfaw stationary “filterpanels”, usinglifferent filter
parameters for each panel, and then interpolating a combined resuthérpanels. In

fact, nonstationary combination éxactlyformed by slicing through an exhaustive set

of filter panels as shown in Figure 4.

Though applyinghe same filteform as a combination or a convolutican give

very differentresults, it is alsarue that aconvolution filter form can always be
constructed which will give identical results to a combination filter and vice-vEnsa.

is, if h(t) is filtered witha(u,v) usingequation(3) to getg(t) it is always possible to

find a filter,a(u,v), which can bapplied with equatiof2) to yield the identical result

a(t). Therefore, though combination does not fahe linearsuperposition of impulse
responses of the filter a(u,v) in equation (3), it does form the linear superposition of the
impulse responses of a related quarfty,v).

DUAL-DOMAIN FORMS OF NONSTATIONARY FILTERING

Thetwo forms of nonstationarifjitering introduced above aneery closely related.
Both are linear andoth have stationary convolution aslimiting form. However;
when a nonstationarynpulseresponse function, a(u,v), &plied with equation (2)
or, alternatively, with equatiof3) the resultscan differ strongly. To understanthis
better, we will now derivelual-domainforms for both operationghe name is meant
to imply that the domain of the signal changes during the application &ftéingeither
from time to frequency or theeverse. First walefine forward and inverse Fourier
transforms:

Hm) = | h(Dexp—i2m dr 42)
h® = | H(nexp i2m dn (ab)
G(f) = f ~ gltyexp -2t ot (53)
o(t) = f G(f)exp i2rt df . (5b)

Note that the spectra of g and h are G and H and that, corresponthegrputtime t

is the input frequency while the output time, t, has frequency f. It is also emphasized
that theseexpressionsare all ordinary Fourier transformsMost other filtering
techniques whichare capable ohonstationary effectsise a nonstationary transform
such asthe wavelettransform, the Gabor transform, orthe short-time Fourier
transform (see Margrave, 1996 1998, for a discussion)Yhe theory presented here
differs from these approachestirat ituses ordinary Fourier transforms throughout.
That is, the signal to be filtered is never decomposed on a two-dimendiomel
frequency (or shift-dilation) grid.

The dual-domain form of nonstationary convolution follows by using equation 5a to
take the forward Fourier transform of equation (2)
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o

G(f) =

o

exp —i2rdt dt . (6)

{ f " alt—1, Dh(T)dr

—0o0

The order of integration can be reversed in equd6prunderquite general conditions
which are discussed in Margrave (1996 or 1998). This gives

e oo

G(f) = j a(t—7, T)exp —2rt dt h(m)dr . (7)

J-—

Now, the inner integral can be evaluated by letting u totget

G(H)= | _amh(exp—izr dr ®)

where

a(pv) = f_: a(u,v)exp —i2mpuldu . (9)

In equation (9), u and v are the generalized times mentioned before and p is a frequency
corresponding to u. At first, inay seemodd towrite this result in terms osuch
generalized quantities instead of the f an@quired in equatiofB8) but thiswill allow

the same expression to be used later for nonstationary combination ma(chvasvas

used in both equations (2) and (3).

Equation(8) is the desired duaform for nonstationary convolution and uises
a(p,v) with p mapped to f and v to. First note that if the v dependence @fp,v)
becomes constalfte. the stationaryimit) then a(f) can be taken outside thetegral
and we have the ordinary forward Fourier transform oftihes a filter functioro (f).

That is, we get the expected stationary result that the filter is applied by multiplying the
spectraMore generally,a(p,v) depends strongly oboth p and v and equation (8)
shows that it is applied simultaneously with the forward Fourier transfotireahput
function h(). the final output signag(t) is obtained ashe ordinary inverse Fourier
transform of G(f) as in equation (5b).

As defined by equatio(®), a(p,v) isthe ordinary Fourier transform ovéhe first
time coordinate of the impulse response function and is called the nonstationary transfer
function. Thatis, a(p,v) givesthe Fourier spectrum athe impulseresponse foeach
impulse arrival time v. There are few restrictions on the natuogm#) sothat nearly
arbitrarily complex spectral functions can be applied and theyvargyarbitrarily with
time. (The only restrictions required are those sufficiemhade the integrals converge
and to allow their interchange.) Since equat@nis an ordinary Fourier transform, it
is easily inverted to give a(u,v) in termsodp,V).

Figure 5 illustrates the application of stationary and nonstationary filters through the
discrete equivalent matrix operations for equation (8).

The dual-domairiorm of nonstationary combination is derived by substituting for
h(t) in equation (3) its expression as an inverse Fourier transformmyfas(given by
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equation (4b). The derivation is similarttwat already givemand involves a reversal of
the order of integration and a change wdriables. The details may bdound in
Margrave (1996 or 1998) and the result is

o(t) = f an OHM)expi2mtdn | (10)

This result contrasts strongly widguation(8). In both caseshe same nonstationary
transfer function is involved; however in equat({@) it is applied simultaneously with
the forward Fourier transformvhile in equation(10) it is with the inverseFourier
transform. Furthermorenote that the integration in equatidB) involves the v
dependence af(p,v) while equation (10) integrates over the p dependence.

These dual-domaiforms are conceptually rich andffer great flexibility in the
design of filteringalgorithms. Considerable insigban be gained into the distinction
between the convolution and combination forms by analyzing the simple case

j‘/al(p), v<O0

a(p,v) = 1a2(p), vs0 (11)

Herea(p,v) is composed of two stationary filters, discontinuously juxtaposed atv = 0.
First, compute nonstationary convolution from equation (8)

G(f) = o) f h(v)exp—2rtt dt +a f) L h(v)exp—2nftdt (12)

Now define two window functions

and Q,(1) = ‘ 0,1<0 (13)

[1,1<0
20 = 11,120,

10,T=0

\

Using these window functions, equation (12) can be rewritten as

G(f) = o) f Q,(Dh(v)exp -2t dt +a (7 f Q(h(vexp—2rftdt  (14)

in which the integrals ar@ow ordinary forward Fourier transforms. If wet FT
denote a forward Fourier transform and IFT an inverse Fourier transform, then the final
filtered result in the time domain is

\

[
[ 2 \
a)=1FT 2 o HFT] Qmh(T) || (15)

fot k=1 T f

\ J

This result has an obviougeneralization to the caseherea(p,v) consists of any
number of piecewise constaségments. In this case, shows that nonstationary
convolution can be formed from a set of stationary operationgifgowing the input
dataset to select that portion corresponding to each stationary filter segment, filtering the
windowed segment, and superimpositite results. (Since the inverse-ourier
transform is linear, the summation and the IFT can be interchanged in equation (15).)
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Now consider the computation of nonstationary combination with equ@ttyrfor
the filter form of equation (11). In this case, equation (10) becomes

/

| f "o (MHM)expizmtdn, t<0
g)=¢ " - . (16)
f o (MHM)exp i2mtidn, t= 0;

\

Using the window functions of equation (1&guation(16) can be written as a single
specification

00 = 2,0 _aymHmepizmtdn + Q.0 amHmepizmtdn  (17)

and this result can be written in a form similar to equation (15) as

2 / , S
o= 2 0 IFT ayFT (h) | (18)

k=1 ‘u\rlat T-1

/3
As before, thisresult can easily be extended to an arbitrary number of piecewise
constant filter segments.

Equations (15) and (18) offer amtuitive understanding ofhe essential difference
between nonstationary convolution and combinat®mpposethat thenonstationary
filter specification can be written as piecewise constant (in tiimafis, as acountable
number stationary filter spectra defined otrere zones.Then define a set afindow
functions, one foreach stationary filtersuch that the window is unity over the
specification zone of the filter and zero elsewhere. Then, a nonstationary convolution is
computed bywindowing the input dataset,filtering each windowed result, and
superimposing them. In contrast, a nonstationary combination proceeds by filtering the
input dataset (without windowing) with each filter specification, windowiagfiltered
results, and superimposing. Imagine an irgataset thatontains a singléve sample
(an impulse) which falls ithe middle of the jth filter specificatiomone. Suppose
further that the impulseesponses oéach stationary filter areery long intime such
that they easilyspanthe specificatioreones of many othefilters. The nonstationary
convolution will simply be the impulsesponse ofhe jth stationary filter since only
the jth window applied to the input data will containonzero energy. However;
nonstationary combination gives a much different answer. Since the stationary filters in
equation(18) are applied beforevindowing, each will produce itsown impulse
response of the single live input sample. The applicatiomirfiows after-the-fact will
result in a composite “impulgesponse” which changes discontinuouslgaath filter
specificationboundary. Thigesult is even more general than this analysis indicates.
Nonstationary convolution offers a powerfukthod of solution tghysics problems
which is superior to nonstationacpmbination because the former creates a scaled
superposition of impulse responses while the latter does not.

A general property of a combinatiditter, suggested byhe previous paragraph, is
that if a(p,v) hasany discontinuities in théime direction (v), these will result in
discontinuities in the filtered output. Thus it is possible to produo@rgpletely abrupt
change in thetime domain output. Nonstationaryconvolution cannotshow this
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behavior since the continuous superposition of impulse responses will smooth over any
filter discontinuities.

As an examplethe method of wavefield extrapolation Iphase shift (Gazdag,
1978) can be straightforwardly extended to nonstationary phase sHIRSPS)
(Margrave and~erguson, 1997) bgimply replacing v by(x) (v is velocity) in the
constant velocityexpression and formulatinggorrectly as convolutionaéxpression.
The same nonstationary wavefie@tktrapolator, whermapplied as a nonstationary
combination leads to the method BSPI (Gazdag andSquazerro, 1984). Figure 6
shows a comparisdoetween thesapproaches. In Figure 6a isv@locity field which
varies rapidly withlateral position but is constant vertically. Figure 6b isaav of
impulses which will beextrapolatedthrough a single 50nvertical step with both
methods. The NSPS result (Figure 6¢) can be seen to be a superposition of hyperbolic
impulse responses while the PSPI result (Figure 6d) is relatively chaotic.

RELATIONSHIP WITH PSEUDODIFFERENTIAL OPERATORS

One of themost enduring reasons ftre utility of Fourier analysis is itability to
reduce constant-coefficient PDE’s to ordinatiferential equations or even simple
algebraic equationwhich are thensolved directly. The use of Fourier theory has
therefore established a great many elegahitions to physical problems but with the
limitation that theymust be described by a constant coefficiBBIE. Well known
examples in the geophysical literature areRke migration theory of Stol{1978) and
the phase shift extrapolation method of Gazdag (1978).

The theory of pseudodifferenti@perators wasleveloped ovethe last several
decades as an extension of the concepEoafier analysis tdhe solution ofvariable
coefficient PDE’s. (Fosummaries se8tein, 1993, or Taylor, 1996.) As arample
of a pseudodifferential operator, consider one of relevance to wave propagation such as

2 2 e o
VZ(X)(quJ(x):vz(x);z f @K)exp i2rix dk= f apoke)expizrkxdk  (19)
X X ‘ / - ) /
where

a(xK) = i2rkv(x) (20)

In equation (19), the first step appliesthe differential operator *(x)d%/0x> to a
wavefield, Y(x); the second step expresséise wavefield as an inverseourier
transform of its spectrung(k); andthe laststep moveshe differential operator inside
the Fourier integral.The last term is called pseudodifferential operator and is a
prescription forthe operator application in thifeourier domaina(x,k) as given by
equation (20) is called the symbol of the differential operator.

Pseudodifferential operatoese easily definedor differential operatorsvhich are
arbitrary polynomials opartial derivativewith variable coefficients in any number of
dimensions. The resulting forms are all mathematically similar to equa®rand the
symbols of such operatorgenerally become algebraic polynomials in k with
coefficients which depend on x. Comparison of equaf®) with equation(10)
showsthat a pseudodifferentiaperator is applied with a nonstationary combination
filter whose form is an algebraic polynomial in the spectaaiables. This observation
establishes alirect link between nonstationary filter theory and the theory of
pseudodifferentiabperators. A forwargbseudodifferential operator is a nonstationary
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combination filter of polynomial form in the spectral variablesleed, it seemthat all
pseudodifferential operators and the related Fourier integral operatoi®e viewed as
nonstationary filters.

On the contrary, it is not always fruitful to consider nonstationditiers as
pseudodifferentialoperators. Many nonstationary filters aredesigned for noise
reduction, signashaping, omther purelydataprocessing tasks€ven if suchfilters
could be expressed apectralpolynomials,the correspondingdifferential operators
would have little meaning. Furthermore, though the combination form of nonstationary
filters emerges directly in pseudodifferential operator theory, the convolution form does
not. Though, asmentionedabove, any combination operatohas an equivalent
convolutional form, the recognition of thetwo distinct forms is a strength of
nonstationary filter theory. It allows Green'’s function or Fourier results from stationary
theory to be extended to the nonstationary wagerelatively little effort compared to
the pseudodifferential operator approach.

Pseudodifferential operator theory can generate moraratesolutions tocomplex
physical phenomena than the nonstationary filter approach. The essential assumption in
the latter case is that a solution to a variable coefficient PDE can be constructed from an
appropriate superposition of solutions from constaogfficient PDE’s, whose
coefficients are “frozen” at locadalues. Thigmplicity assumeshat localgradients of
coefficients do not affect theolution. In principle,the pseudodifferential operator
approach does not have thimitation though this is purchased thie expense of very
complex mathematics. The aforementioned extension opltiase shift method on
wavefield extrapolation to nonstationary phase shift is a case in point. This advance is a
straight forwardapplication of nonstationary filtering anoffers great promise. A
similar formulation, reached by pseudodifferential operator methbds yet to be
published. Orthe otherhand, de Hoop (1996) usgseudodifferential operators to
reach a very general solution to the 3-D acoustic scattering praisieuming onlythat
material parameters arsmoothly variable (infinitely differentiablejunctions of
position. Though amajor advance,the mathematical complexity dhis work has
slowed its acceptance. Nad¢so, the nonstationary filtering approadoes notequire
smoothly variable media.

NONSTATIONARY INVERSE FILTERS

Just as nonstationary filter theory iglieect generalization of stationacpncepts, it
appearsthat inverse filters can be formulatethrough suitablegeneralizations of
stationary ideas. This promising avenue has just begun to be explored. As an example,
it seems reasonable to expect that fibravard filter is applied by a convolutional form
then the inverse will be a combinatiofiaim and vice-versa. Considdre possibility
that the inverse to equation (8) might be found by

A(r) = f o~ 0G(expli2ntt df 21)

Substitution of equation (8) for G(f) in this expression gives

h() = [ a~(f,1) f " a(f uh(u)exp —i2rfuldu exp i2rdf . (22)

o

Interchanging the order of integration leads to
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A(r) = f h(WAUT)dU (23)

where

Au,T) = J ) a(f,u)a‘l(f,r)exqtiZT[f(r - u)jjwdf (24)

is the resolution kernel of thpossible inversion. Clearly, we woulike to have
A(u,1)=94(t-u) for a perfect inversion and it is appropriate to inquire about whether this
is possible. Ifo(f,u)a(f,1)=1 for all u and thenA doesyield the desiredirac delta
function; however, wecannot expecthis condition to be satisfiefr all times with a
nonstationary filter. It seems apparent that as longfas)a™(f,t) changes muchmore
slowly with f thandoes exp(i&f(t-u)) thenA(u,t) can be expected to hesry delta-

like. Note that, for us, aa™ is unity provided onlythat a™ exists from which it
follows that equation (24) has a singularity at.u¥hus it islikely that theresolution
kernel is very sharplypeaked, forquite generabi(f,u), andthat equation23) is a
useful inversion formula.

More study on the issue of inverse filters is requifgdong the manyjuestions to
be answered are: What conditions are required to guarantee that e(R@iticnavalid
(or atleastuseful) inverse®hat is the relation between tlag@proach here and the
established methods for Fredhointegral equations? Is nonstationary combination
sufficiently stable to be used in a robust inversion of nda&g?Would a convolution-
based inversion of a convolutional expression be more stable and more useful?

As a first step, Schoeppnd Margravg(1997) have demonstrated thedbust and
useful deconvolution routines can be built based on tideses. Thisapproach merges
the ideas of stationary frequency domain deconvolution and invefgeer@@g. The
result is an algorithm which can deconvolve the source waveform, compensate for both
the amplitude anghase effects adbsorption, and address a wider classnotftiples
than conventional deconvolution. Moreover, it doesraqtire the precisknowledge
of Q that inverse Q filters typically neeSuch a nonstationaigeconvolution approach
promises higher resolution seisminages with a stationary embedded wavelet and
more meaningful reflection amplitudes.

FOURIER DOMAIN EXPRESSIONS

These nonstationary filteflorms, convolution and combinationgan be moved
entirely into theFourier domainThe derivations are similar thatusedabove in the
dual-domainexpressions andre given completely in Margrayd 996 and1998).
Simply put, nonstationary convolution can be moved entirely into the Fourier domain to
give

G(H) = | HA(-n)n (25)

where
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APD= | alpverpizpudaey) = | auvieqizipudi . (26)
Equation(26) defineghe frequency connectidninction, A(p,q),so-called because it
determines the connection or mapping between input and output frequency. A(p,q) may
be computed fronu(p,v) by anordinary Fourier transform over @r, equivalently

from a(u,v) by a 2-D Fourier transform over u and v.

The comparable expression for nonstationary combination in the Fourier domain is

6= | HmAMI-nan . @7)

The subtle difference between equati@?i) and (27) is very intriguing. Botten be
seen to be nonstationafiter forms which are mathematically similar to th@me
domain expressions of equations (2) é3d In fact,nonstationary convolution has a
combination form in the Fourier domain and vice-versa for nonstationary combination.

Figure 7 showghe discrete computations bbth equation(25) and astationary
filter as matrix operations. The filter being applied is the same as in Figures 3 and 5. In
the stationary limit,A(p,q) becomes A(@)(q) (Margrave, 1996 or 1998) and the
integral in equatior25) collapses to acalar multiply.For adiscrete application, this
becomes a diagonal matrix multiply akown in Figure 7a. Ithe diagonal were
displayed in profile,the spectrum of the stationary filtevould be seen. In the
nonstationary caséhe filter matrix can have significapbwer everywhere, though it
will be diagonally dominant for a large class of quasi-stationary filters.

Comparing the matrices in Figures 3 and 7, we can appréustas the stationary
limit is attained, the convolution matrix becoméseplitz and the spectramatrix
becomes diagonal. In general nonstationargetting, bothmatrices are non-Toeplitz
and potentially fully populated.

Equation (26), like equation (9) moves the nonstatiofiey specification between
domains using ordinary Fourigransforms. As suchthese equations can easily be
inverted andprovidesgeneral prescriptionr moving afilter betweendomains. It is
usually preferable to design the filter in the dual-domain and then move it Fouher
or time domains for application.

CONCLUSIONS

The concept of convolution is important data processing as flter application
technique; but more importantlyplays acentral role in physicaheory. The partial
differential equations of physics can have tiseilutions written as convolutions of an
impulseresponse with a source distributioiWhen the coefficients of thequation,
which are determined by the physical parameters ofnlgglium, are constant, the
convolution is stationary and trsolution is often exact. Whethe coefficients vary
with space or timethe convolution is nonstationary and tkelution is generally
approximate.

Nonstationaryfilter theory provides acompletemethodology for description and
application of nonstationaryiters. Nonstationary convolutiofilters form the scaled
linear superposition ofhe impulseresponses ofhe nonstationaryilter. An alternate
filter form, nonstationary combination, still forms a linear superposition and reduces to
stationary convolution in the stationary limit; but does not form the superposition of the
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filter's impulse responsesThe theoryprovides arbitrary control othe time and
frequency characteristics of the nonstationary filter and applies the filter without having
to decompose the signalith a nonstationary transformOnly stationary Fourier
transforms enter into the theory.

When moved into the dual-domain dme-frequency, nonstationary convolution
becomes a generalizetbrward Fourier integral. This expressioapplies the
nonstationary filter simultaneouslyith the transformation of the signfikbm the time
domain to the frequenayomain. Nonstationargombination is a generalized inverse
Fourierintegralwhich moveshe signalfrom the frequency to theme domain while
applying the signal.

For a nonstationarfilter whosetemporal variation is piecewismnstantthe dual-
domain forms can be manipulated to produce an intutimelowing technique of filter
application. Given a set of boxcaindows, one per filter segmentith its passband
centered on the filter specificati@one, nonstationargonvolutionwindows the data,
filters each windowed subset,and superimposesthe results. Nonstationary
combination, filters the unwindowethtawith each filtersegmentthenwindows and
superimposesApplied to wavefieldextrapolation, nonstationary convolutigNSPS)
produces a dramatically superior result to a combination approach (PSPI).

Pseudodifferential operators and Fourietegral operators are nonstationary
combination filterswhose filter form is a polynomial inthe spectralvariables.
However, many nonstationaryilters, such as those designed form purelgta
processing reasonsare not usefully described as pseudodifferentiaperators.
Nonstationaryfilter theory canlead quickly to valuablenonstationary extensions of
known stationary solutions to physicptoblems. This is done und#re assumption
that the a localsolution is always well approximated by a stationagiution.
Pseudodifferential operator theory provides an apprcaphble of developing more
general solutions but at the expense of more complicated mathematics.

A useful approximate inverse filter to a nonstationary convolution is given by a
nonstationary combination witthe inverse of thdéorward filter. Such an inversion
formalism can provide aharp resolution kernel. Nonstationagconvolution can be
formulated along these lines.

Nonstationary filters can also be re-expressed in the full Fadwieain. Ifthe time
domain discrete filter matrix is Toepli{gtationary) thé~ourier domairfilter matrix is
diagonal and vice-versa.

Nonstationary filter theory holds great promise for many geophysical problems.
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Huygens Principle as a
stationary convolution. Velocity
must be constant.

Huygen's wavelet

Huygens Principle as a
nonstationary convolution.
Velocity may vary arbitrarily in
3-D space.

Fig. 1. A) Huygen'’s principle in a constant velocity medium showing an input wavefront (time t)
and an output wavefront (time t+At). Every point on the input wavefront is replaced by a
Huygen’s wavelet of radius vAt and the superposition ofall such wavelets forms the output
wavefront. Mathematically, this process is a convolution. B) Huygen's principle for a variable
velocity medium. The Huygen’s wavelets simply change their radius according to the local
velocity but all else is the same. This is a nonstationary convolution.
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Impulse response matricies

u —> u ——»
.0 .0
— —
1F 1
() ()
E E
=27 =2t
A B
3 2 ' 6 1.0 3 2 ' 6 10
time (sec) time (sec)
Stationary Nonstationary

Fig. 2. A) A stationary impulse response matrix. B) A nonstationary impulse response
matrix. In both matrices, each column contains the impulse responieeat dilter at

the time, u, denoting the arrival time of an impulse. In the stationary case, the impulse
response is constant with u while in the nonstationary case itvaries, icashis
according to a constant Q model.
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A) Stationary Convolution as a Matrix Operation
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Fig. 3. A) Stationary convolution as a matrix operation. The matry a{tdtiplies the

input column vector hf to give g(t). B) Nonstationary convolution asmetrix
operation. In both cases, the convolution matrices are formedfrom the impulse
response matrices of Figure 2.

a(t-1,1)
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Fig. 4. A nonstationary combination does not fdine linearsuperposition of impulse

responses. Instead, it can be described as a slicing operation through an exhaustive set
of stationary filters, one for each output time.
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A) Stationary filtering in the mixed (t,f) domain
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B) Nonstationary filtering in the mixed (t,f) domain
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Fig. 5. A) Stationary convolution and B) nonstationary convolution represented in the
dual domain (f) for the same case as FigureT8e filter matriceshow the spectrum

of the filter for each input time In the stationary case the filter does not vary with

while it varies systematically in the nonstationary case. The dual domain filtering
operation moves the data from time to frequency as it applies the filter. (These graphics
are not true matrix equations since they omit the depiction of a Fourier transform

matrix.)
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Fig. 6. lllustration of wavefield extrapolation as a nonstationary filtering operation. A)
The input velocity distribution. Velocity varies rapidly laterally but is constant
vertically. B) The input wavefield is a set of impulses designed to capture the impulse
response of the extrapolator. C) Output wavefield after extrapolationthough a 50m
vertical step using NSPS (nonstationary phase shift). This method is a nonstationary
convolution and haslearly formed a superposition of impulse responsesOXput
wavefield after extrapolation through though a 50m vertical step using generalized PSPI
(phase shift plus interpolation). This method is a nonstationary combination and has not
formed a clean superposition of impulse responses.
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A) Stationary Convolution in the Fourier Domain
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B) Nonstationary Convolution in the Fourier Domain
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Fig. 7. Stationary (A) and nonstationary (B) convolution in the Fourier domain for the same
filter as Figure 3. In both cases, the filter matrix multiplies the input spectrum to yield the
output spectrum. In the stationary case the filter matrix is purely diagonal with the Fourier
spectrum of the filter along the diagonal. This recreates the convolution theorem. In the
nonstationary case, the filter matrix contains off-diagonal power which describes the
nonstationarity of the filter. This result generalizes the convolution theorem.
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