
Time variant spectral inversion

CREWES Research Report — Volume 9 (1997) 20-1

Time variant spectral inversion

Alana R. Schoepp and Gary F. Margrave

ABSTRACT

Nonstationary filtering techniques can be used to create nonstationary deconvolution
operators designed directly from the seismic data and apply them to the data.  Such
operators can be continuously time-variant and have any desired amplitude and phase
spectra. The operator design uses time-variant Fourier or Burg spectra measured
directly from seismic data, which are smoothed, inverted, and combined with a
minimum-phase spectrum, if desired. This method of deconvolution, named time-
variant spectral inversion (TVSI), approximately corrects the seismic data for the effects
of anelastic attenuation, frequency dispersion, and source signature. The result is a one-
dimensional nonstationary operation which extends the range of stationary
deconvolution to a type of data-driven inverse-Q filter.

INTRODUCTION

As a wave propagates through an anelastic medium, some of its energy becomes
converted to heat by the internal friction of the medium and is irreversibly lost.  The
amount of energy loss due to absorption is an intrinsic property of an anelastic medium
and is commonly described by the dimensionless parameter, Q.  The quality factor, Q,
is also referred to as the internal friction or dissipation factor.  Although there are
several different equations used to describe Q (see Johnston and Toksov, 1981, for a
description), the most common is that Q is the ratio of the stored energy to the
dissipated energy in a wave:

Q=-2πE/∆E, (1)

where E is the elastic energy and - ∆E is the energy loss per cycle of the wave. The
constant Q theory (Kjartansson, 1979) postulates that Q is independent of frequency
over the range of seismic frequencies and experimental evidence supports this as well.

In practice it can be difficult to isolate the effects of anelastic attenuation described by
Q from the effects of other attenuative mechanisms.  Transmission losses, geometrical
spreading (spherical divergence), mode conversion, intrabed multiples and scattering of
acoustic energy all contribute to the degradation of seismic signal (Schoenberger and
Levin, 1974).  Time-variant spectral inversion, as presented in this paper cannot
distinguish the effects of Q from the effects of stratigraphic filtering.

Absorption is necessarily accompanied by minimum phase dispersion in a  linear,
causal medium (Futterman, 1962).  Therefore, since a causal pulse in a linear
absorbing medium is minimum phase, its phase spectrum is related to the log of its
amplitude spectrum by the Hilbert transform (Karl, 1989).

Absorption makes all seismic data nonstationary.  “Nonstationary” is a general term
used to describe a property that is variant with time or space. In contrast, stationary
refers to a property that is invariant.  In practical applications, the term nonstationary is
meaningful only when used in reference to a measure.  For example a time series of
reflection coefficients fluctuates randomly corresponding to geology.  On a small scale,
these fluctuations of the reflection coefficients could be described as nonstationary,
however we may choose to describe the reflectivity as stationary because large scale
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averages are not systematically changing.  The term nonstationary can used to describe
a property that is time-variant and in the context of this work, the two words are
interchangeable.  This paper describes a specific application, a time-variant inverse or
deconvolution filter, based on the more general nonstationary filter theory.

The essence of Q theory is that anelastic losses are time and frequency dependent
and therefore spectral attenuation and amplitude (time-domain) decay are two
manifestations of the same problem.  Absorption causes a seismic pulse to broaden and
decrease in amplitude in the time domain while losing spectral bandwidth in the
frequency domain.  Figure 1 shows the effects of anelastic attenuation corresponding to
Q of 50, on a minimum phase wavelet versus traveltime.  Conventional stationary
methods to improve resolution of seismic data include deconvolution and frequency-
independent gain.  These methods attempt to separate time-domain effects from
frequency-domain effects and treat both problems individually.  Gain is applied to
boost the amplitude of temporal events at later times, and conventional stationary
deconvolution is designed to remove the source signature and recover lost high
frequencies in an effort to restore resolution.
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Figure 1:  A pulse traveling through a one-dimensional anelastic medium,  Q=50, broadens
and its amplitude decreases with time.

The purpose of time-variant spectral inversion (TVSI) is to correct for time and
frequency-domain effects simultaneously, in accordance with our understanding of
how earth processes created these effects in the data. TVSI has been developed from a
model of a wavelet propagating through the earth which suffers frequency-dependent
attenuation and dispersion along its travelpath. TVSI removes the time and frequency
domain effects of attenuation as well as the effects of source signature thereby
increasing resolution and boosting the amplitude of events at later times. In a lossless
medium (Q → ì) the propagating wavelet is time-invariant and the nonstationary
deconvolution (TVSI) process becomes stationary deconvolution and only removes the
source signature.  TVSI can be considered as a data-driven inverse-Q filter.

Other inverse-Q filtering algorithms have been developed.  Hale (1982) proposes an
inverse-Q filter and deconvolution called Q Adaptive Deconvolution.  This method is
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implemented with a prediction error filter and attempts to compensate for attenuation,
dispersion, and source waveform.  In addition, it yields an estimate of Q.

BACKGROUND

TVSI has been developed as an extension of the basic concepts of the stationary
convolutional model and stationary deconvolution.  Therefore, a review of the
stationary convolutional model and stationary Fourier domain deconvolution will be
presented in this section.  Next, to develop TVSI from stationary deconvolution, a
technique is required which will decompose a trace or operator on a time-frequency
grid. For this purpose we use a time-variant spectrum (TVS), which is introduced to
explicitly describe how the spectrum of a trace or operator changes with time. Once we
have this method of describing a nonstationary operator, we will briefly examine how it
may be applied to the data.

In the stationary convolutional model, a seismic trace is composed of the reflectivity
of the earth, r(t), the near surface multiples, m(t), and the source wavelet, w(t).  These
factors are related together, in the time domain, through convolution to produce the
seismic trace, s(t):

s t r t m t w t( ) ( ) * ( ) * ( )= . (2)

In the frequency domain, convolution becomes multiplication and the above equation
becomes:

S f R f M f W f( ) ( ) ( ) ( )= . (3)

Fourier or frequency domain stationary deconvolution is based on the convolutional
model and deconvolves the trace by exploiting the similarities between the power
spectrum of the trace and the power spectrum of the wavelet.  The power spectrum of
the trace is computed and smoothed to obtain an estimate of the power spectrum of the
wavelet.  Since a linear, causal pulse in an absorbing medium is minimum phase
(Futterman, 1962), the minimum phase spectrum of the wavelet can be calculated as the
Hilbert transform of the logarithm of the amplitude spectrum.  The trace is then
deconvolved by dividing the trace by the estimated amplitude and phase spectrum of the
wavelet.

To develop TVSI, a tool is needed to examine how the spectrum of a trace changes
with time.  A time-variant spectrum, TVS, is calculated from the input data by applying
a window to the input trace and calculating the ordinary Fourier spectrum of the
windowed data, as shown in Figure 2. The window is then moved successively down
the trace and the Fourier spectrum is calculated for each new position of the window.
Typically there is an overlap of 80 to 90 percent between neighboring windows. (This
technique is known as the spectrogram or short time Fourier transform (Cohen, 1995)).
A TVS can be displayed as a grey level plot or a 3-dimensional surface plot, with
frequency as the horizontal coordinate and time as the vertical coordinate.  In the grey
level plots, black represents large positive numbers and light grey represents small
positive numbers.  Each row of the plot corresponds to the complete spectrum of the
windowed input data at a specific time.  In general, a TVS is complex valued and
contains both amplitude and phase information.  The amplitude (magnitude) of the
TVS, will be referred to as |TVS|.
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Figure 2:  A window is applied to a seismic trace, as in step A, and the ordinary Fourier
spectrum  of the windowed data is calculated (step B).  This spectrum then becomes a row of
the resulting nonstationary spectrum, C.  The window is then moved successively down the
trace, with a large degree of overlap, and the spectrum is calculated at each new position of
the window to create the nonstationary spectrum.

The relative detail in time and frequency of the TVS is related to the window size as
governed by the uncertainty principle.  The uncertainty principle, which may be familiar
from quantum mechanics, states:

∆t∆f=constant, (4)

where ∆t is the window length in time and ∆f is the length of the spectrum of the
window in frequency.  The uncertainty principle is the relationship between the widths
of a Fourier transform pair in their respective domains.  For example, a boxcar window
in the time domain will become a sinc function in the frequency domain and the width
of each is interrelated as determined by equation 4.  

A seismic trace analyzed in the frequency domain, is given by:

G(f) = ∫ s(t)w(t) e-2πift  dt  =  ∫ S(f′) W(f-f ′)df′, (5)

where s(t) is the seismic trace, and S(f) is its corresponding frequency spectrum.  The
window, in time, is denoted by w(t), its frequency spectrum is W(f).  G(f) is the
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spectrum of the windowed data.  Convolution is a smoothing operator, so therefore
S(f) is smoothed on the scale of ∆f, and the extent of this smoothing increases as ∆t
becomes smaller.  Therefore, some consideration is required when choosing a window
length parameter  as it will affect the frequency resolution of the resulting TVS.

Time-variant spectra can be applied to seismic data as nonstationary operators in a
manner similar  to the application of stationary operators.  A stationary wavelet can be
applied to a reflectivity via Fourier transform techniques:

S f W f r t e dtift( ) ( ) ( )= ∫ −2π ,
(6)

where S(f) is the stationary spectrum of a trace, W(f) is the stationary forward operator
(wavelet), and r(t) is the reflectivity in the time domain.  The reflectivity in the Fourier
domain is computed from the trace using the inverse operator:

R f W f s t e dtift( ) ( ) ( )= − ∫ −1 2π , (7)

where R(f) is the reflectivity in the Fourier domain, W-1(f) is the inverse of the
spectrum of the wavelet, and s(t) is the trace in the time domain.  The forward
application of a nonstationary operator Wp(t,f) can be applied to the reflectivity in a
similar manner, through the following formula (Margrave, 1997):

S f r t W t f e dtp
ift( ) ( ) ( , )= ∫ −2π . (8)

By hypothesis, for quasi-stationary processes, the inverse operator Wp
-1(t,f) can be

applied to the input trace by:

R f S t W t f e dtp
ft( ) ( ) ( , )= ∫ − −1 2π

. (9)

NONSTATIONARY SPECTRAL MODEL

Implicit in the creation of a spectral inverse operator is a model which relates the
spectrum of the input trace to those effects which we would like to remove.  The
stationary convolutional model as described in equation (3) can be extended into the
nonstationary realm to yield a model of the TVS, S(t,f), of an attenuated, nonstationary
seismic trace:

  S(t,f) R(t,f)M(t,f)W(f)e- (t,f)ft+i (t,f)= πα φ , (10)

where R(t,f) is the nonstationary TVS of the earth’s reflectivity function, which we
assume to be statistically white in f and stationary over large time scales.  M(t,f) is the
nonstationary TVS describing multiple reflections, W(f) is the stationary spectrum of
the source signature including stationary near surface effects, α(t,f) is a generalized
nonstationary attenuation function, and φ (t,f) is the phase associated with attenuation.
If α=1/Q(t), the exponential attenuation becomes the constant Q model of attenuation.
Equation (10) can also be written in terms of the amplitude spectrum of each
component:

  | (t,f) | | R(t,f) || M(t,f) || W(f) | e
(t,f)ftS = −πα . (11)

Note that if the time dependence of equation (10) vanishes, then the stationary
convolutional model, equation (3), results.
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From equation (11) we can see the amplitude of the forward operator, |Wp(t,f)|
acting on the reflectivity is modeled as:

| ( , ) | | ( , ) || ( ) | ( , )Wp t f M t f W f e t f ft= −πα
 (12)

The forward operator contains the attenuation and source effects and it physically
represents a wavelet propagating through the earth and attenuating with time.  The
forward operator can be estimated by attempting to eliminate the reflectivity, R(t,f),
from equation (11).  As in stationary Fourier domain deconvolution we assume that the
reflectivity effects can be removed through smoothing the |TVS| of the seismic trace.  It
is not clear what the smoothing does to |M(t,f)|.  We assume that the general trend of
the TVS of the seismic trace is due to propagation effects and source waveform, and
that the detail in the TVS is due to reflectivity.  The forward operator can be left as zero
phase or coupled with a minimum phase spectrum, which seems reasonable as we
expect the earth to have minimum phase attenuative processes.  The forward operator is
then inverted and applied to the data using equation (9).

The assumptions that have been made to simplify the spectral inversion process limit
the TVSI procedure.  We assume one-dimensional wave propagation and therefore
require spherical divergence corrections to be applied prior to TVSI.  Also, as with
stationary deconvolution, TVSI cannot correct for all multiple effects, although it can
potentially handle a wider class of multiples than stationary deconvolution.  For
simplicity, we assume that the attenuation depends only on travel time and not raypath.
The minimum phase assumption of a linear , causal earth is a simplification which can
lead to phase complications.  The phase computations in the TVSI algorithm are
handled with a digital Hilbert transform. Since minimum-phase attenuation is created in
the earth through analog means, removal of this phase through digital means is inexact.

METHOD

The first step of the TVSI algorithm is to apply an approximate and deterministic
gain to the input trace.  This is done to prevent aliasing of the steep decay surface when
the input trace is windowed during the calculation of the TVS.  The gain is a
computational convenience and is removed from the resultant trace after the inversion
process.  Gaining the trace adjusts the amplitude of the trace exponentially in time and
the |TVS| of the gained trace is given by:

  | (t,f) | | R(t,f) || M(t,f) || W(f) | e
ft/Q+ tS = −π λ , (13)

where λ is a gain constant.

We have investigated two methods to attempt to eliminate reflectivity from the above
|TVS| to obtain the  forward operator.  The first method is simple-smoothing and the
second is residual-smoothing.  In the simple smoothing method, the |TVS| of the input
trace is smoothed directly in both time and frequency.  An ideal smoother B(t,f) will
have the property:

| ( , ) | | ( , ) | * * ( , )R t f R t f B t f= ≈ 1,  (14)

where | ( , ) |R t f  is the |TVS| of the smoothed reflection coefficients, B(t,f) is an
appropriate smoother, and ** denotes two-dimensional convolution. This smoother is
then applied to equation (11) to reveal the forward operator:
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| ( , ) | ( , ) * * | ( , ) | ( , ) * *(| ( , ) || ( , ) || ( ) | )/Wp t f B t f S t f B t f R t f M t f W f e ft Q t= = − +π λ
,(15)

| ( , ) | | ( , ) || ( ) | /Wp t f M t f W f e ft Q t≈ − +π λ
. (16)

We note that equation (16) does not follow mathematically, but is an assumption
consistent with standard practice in stationary deconvolution.

A smoother applied to the |TVS| of equation (11) , as described in equation (14), will
act on the multiples, M(t,f), the source waveform, W(f), and the attenuation/gain
surface, e-2πft+λt, as well as the reflection coefficients.  The source waveform is assumed
to be time-invariant, so a time smoother should not affect it.  However, the
attenuation/gain surface is very steep, as it is exponential in both time and frequency.  A
smoother applied to this surface will reduce its slope.  Therefore when the final filter is
inverted and applied, the exponential decay surface will not be completely removed
from the input trace.

To address the smoothing issues mentioned above and reduce the bias introduced by
smoothing the exponential-decay/gain surface, a second smoothing method was
devised as an alternative to the simple-smoothing method. The residual-smoothing
method explicitly models the attenuation as an exponential surface in frequency and
time whose shape is determined by the quality factor, Q (assumed to be the constant Q

model).  Assuming that an estimate of Q,   ÃQ, is available and setting multiple effects to
unity.  The attenuation/gain surface can be removed approximately from the |TVS| of
equation (13) to produce a residual spectrum:

| ( , ) | | ( , ) || ( ) | / / ˆ
ρ π λ π λt f R t f W f e ft Q te ft Q t= − + − (17)

| ( , ) | | ( , ) || ( ) | | ( , ) || ( ) |( ˆ )ρ πt f R t f W f e R t f W fft Q Q= ≈− − + −1 1
. (18)

The residual spectrum, |ρ(t,f)|, is mostly free from attenuation effects and is
dominated by the spectra of the source signature and reflectivity.  The general trend of
the residual spectrum is thought to be due to the source signature and the detail in the
spectrum is from the reflectivity.  This residual spectrum is then smoothed two-
dimensionally with time and frequency smoothers to remove the reflectivity from the
residual spectrum:

| ( , ) | ( , ) * * | ( , ) | ( , ) * *(| ( , ) || ( ) |)ρ ρt f B t f t f B t f R t f W f= ≈ , (19)

| ( , ) | | ( ) |ρ t f W f≈ , (20)

where | ( , ) |ρ t f  is the |TVS| of the smoothed residual spectrum, |ρ(t,f)| is the |TVS| of
the unsmoothed residual, and B(t,f) is an appropriate smoother.  Equation (20) also
follows by assumption and not strictly mathematically.  The reflectivity coefficients are
assumed to be white and the smoother satisfies equation (13). In this manner, the
reflectivity effects can be removed from the |TVS| without overly biasing the attenuation
effects.  Figure 3 illustrates the TVSI process up to this point by showing the |TVS| of
the ungained input trace, gained input trace and the smoothed residual spectrum.
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Figure  3:  The |TVS| of the input trace is shown in 3A.  The trace is initially gained and the
|TVS| of the gained input trace is shown in 3B.  The |TVS| of an attenuation/gain surface can
be calculated and divided from the |TVS| of the gained input trace.  This residual |TVS| is then
smoothed, and the result is shown as 3D.

After the smoothing process, the attenuation spectrum is restored to the smoothed
residual spectrum to yield an estimate of the propagating wavelet with gain applied:

| ( , ) | | ( , ) | /W t f t f ep
ft Q t≈ − +ρ π λ

. (21)

The operator may be left as zero phase or combined with a minimum phase spectrum.
The minimum phase spectrum is calculated as prescribed from the following equation:

φmin(t,f)=H(ln(Wp(t,f)+n)), (22)

where φmin is the nonstationary minimum phase spectrum, H is a one-dimensional
Hilbert transform over frequency at constant time, Wp(t,f) is the amplitude spectrum of
the forward operator, and n is a small amount of noise.

The |TVS| of the propagating wavelet can be inverted to produce the inverse
operator:
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| ( , ) | | ( , ) | / ( , )W t f t f ep
ft Q t t f− − +≈1 ρ π λ φ

(23)

The forward operator ,|Wp(t,f)|
-1, is then applied to the trace to remove the, attenuation,

source signature and imposed gain to give an estimate of the reflectivity.  Figure 4
shows the |TVS| of the propagating wavelet, the |TVS| of the propagating wavelet with
gain applied, and the |TVS| of the inverse operator.
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Figure 4:  The |TVS| of the propagating wavelet is shown in 4A.  The propagating wavelet with
gain applied (4B), is then inverted to form the |TVS| of the inverse operator, 4C.

RESULTS

Results from applying TVSI to a noise-free and multiple-free synthetic will be
presented.  The synthetic trace was created by applying a Q filter (Q=25) superimposed
with a minimum-phase wavelet to a reflectivity time series.  First, the results from the
four possible versions of TVSI (simple smoothing and residual-smoothing with both
zero and minimum-phase operators) are compared to the results from stationary
deconvolution algorithms.  Next the smoothing parameters are examined to see how
they affect the output trace of TVSI.  Finally, the residual-smoothing version is tested
for its sensitivity to errors in the estimate of Q.

Figure 5 shows the results from all versions of TVSI (minimum-phase and zero-
phase, simple-smoothing and residual-smoothing) and compares them to the input
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trace, bandlimited reflectivity, and results from time-variant spectral whitening
(TVSW), gain and Wiener deconvolution, and gain and stationary frequency domain
deconvolution. Time variant spectral whitening (Yilmaz, 1987) is a zero-phase
technique to compensate seismic data for attenuation.  The bandlimited reflectivity
represents the ideal output trace.  Figures 6 and 7 display the |TVS| of the traces in
figure 5.
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Figure 5:  A comparison of various deconvolution techniques.  The four combinations of TVSI
are displayed next to each other.  The operators in the simple-smoothing version were
smoothed with 10 Hz frequency smoothers and 0.1 second time smoothers.  The operators
in the residual-smoothing version were smoothed with 10 Hz frequency smoothers and 1.5
second time smoothers.  In TVSI, a stabilization factor of 0.001 (the fraction of the maximum
value of the matrix) was added before inversion of the attenuation/gain surface and before
inversion of the operator.  The Wiener operator was designed on the first 0.3 seconds of the
input trace and 50 autocorrelation lags were used in the operator design.  The smoother in
the stationary frequency domain deconvolution was 30 points in length.  Both stationary
deconvolution methods had a stabilization factor of 0.0001 (the fraction of the zero lag of the
autocorrelation) added as white noise before inversion of the operator.
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Figure 6:  A comparison of the |TVS| of the output trace from the residual-smoothing and the
simple-smoothing method, in both minimum and zero phase.
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Figure 8:  A comparison of the time shift of events for zero and minimum-phase residual-
smoothing methods, simple-smoothing methods and gain and Wiener deconvolution.
Segments of the traces (0.2 seconds in length) were correlated to corresponding segments
of the bandlimited reflectivity.  The solid line shows the time shift associated with the maximum
correlation of the deconvolution method and the dotted line shows the time shift associated
with the maximum correlation of the input trace.  The ‘+’ symbol indicates the values of the
maximum correlation at the corresponding time.  The value of the maximum correlation value
can be read off the y-axis, however it has no physical units.  A positive shift in time indicates
that events has been advanced in relation to the bandlimited reflectivity.  The value of the
maximum correlation indicates how strongly the trace correlated with the bandlimited
reflectivity.
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Figure 9:  The bands in the |TVS| of the bandlimited reflectivity correspond to features in the
trace.

As can be seen from figure 5, the output traces from all versions of TVSI show an
increase in amplitude of events at later times as compared to the input trace.  In addition
to the amplitude corrections, the |TVS| of the output traces from TVSI (figure 6) also
show that much of the bandwidth at later times has been recovered.  The residual-
smoothing process seems more effective than simple-smoothing and, as can be seen
from figure 5, its output seems to match the reflectivity better than the result from
simple-smoothing.  The improvement in performance of the residual-smoothing method
over the simple-smoothing method is related directly to the removal of the exponential
attenuation surface before smoothing.

We have found that deconvolution based on the zero-phase residual-smoothing
version of TVSI  yields results similar to that of TVSW, as can be seen in figure 5. The
last two traces of figure 5 are a result of a combination of gain and Wiener
deconvolution  and gain and stationary frequency domain deconvolution.  Both of these
traces still exhibit reflections which broaden in time, indicating that the effects of
attenuation have not been fully removed.  The |TVS| of both combinations of gain and
stationary deconvolution (figure 7) exhibit a strong loss of bandwidth with time.

The minimum-phase output in both versions of TVSI are more favorable than the
zero-phase outputs.  The minimum-phase option helps to reduce the time shift of events
in the input trace.  This time shift is associated with dispersion and the embedded
minimum-phase wavelet.  The advantage of the minimum-phase results over the zero-
phase results are particularly obvious in the |TVS| of figure 6.  The light-colored band
on the |TVS| of the bandlimited reflectivity  at approximately 0.8 seconds is linear and
corresponds to features in the trace, as is shown in figure 9.  The |TVS| of the input
trace has a corresponding light-colored band, however between 0 and 30 Hz the band
occurs at a slightly later time than on the bandlimited reflectivity and it is difficult to
discern after 30 Hz. The |TVS| of the minimum-phase results show that the light
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colored band is linear and at approximately the same time as the band on the |TVS| of
the reflectivity. The |TVS| of the zero-phase results shows a shift in the band at
approximately 30 Hz.  The position of the band between 0 and 30 Hz corresponds to
the position of the section of the band which is visible on the |TVS| of the input trace.
This shift in the band could be due to dispersion present in the input trace which is not
corrected by the zero-phase operator.  The linear feature occurs at approximately 0.8
seconds in the |TVS| of the gain and Wiener deconvolution, gain and stationary
frequency domain deconvolution, and TVSW.  It is not strong and continuous like the
band on the bandlimited reflectivity.

Although each row of the ‘zero-phase’ operator is zero phase, such operators will
generally change both the amplitude and phase of a trace when applied through equation
(9).  For more information, refer to Margrave (1997).

Figure 8 plots the maximum correlation and associated time shifts between segments
of a particular output trace and the bandlimited reflectivity.  The segments were 0.2
seconds in length and overlapped each other by 0.1 seconds.  As expected, the input
trace has a time advancement due to dispersion and the embedded minimum-phase
wavelet.  The maximum correlation values are low indicating a poor match between the
input trace and the bandlimited reflectivity.  A combination of gain and Wiener
deconvolution has reduced these shifts, particularly in the early part of the trace.  The
maximum correlation values decrease with time indicating that the operator could not
correct for the nonstationarity of the input trace.  The zero-phase TVSI methods have
slightly changed the phase of the input trace, for reasons discussed above.  Both
minimum-phase TVSI methods have produced a reasonable correction of the time shift
and the corresponding maximum correlation values are relatively high.

TVSI asks for several parameter inputs from the user.  The user-specified
parameters  that affect the results most significantly are the length of the frequency and
time smoothers.  Figures 10 to 15 shows how the smoother length influences the
results of minimum-phase simple-smoothing and minimum-phase residual-smoothing.
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Figure 10:  The length of the time and frequency smoothers were varied to determine how
they affected the output from the minimum-phase simple-smoothing version of TVSI.  The
length of the time smoother was held constant at 0.5 seconds while the length of the
frequency smoother, ∆f, was changed from 5 to 30 Hz.  The length of the frequency
smoother was held constant at 10 Hz while the length of the time smoother, ∆t, was varied
from 0.05 to 1.5 seconds.
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Figure 11:  The |TVS| of the resultant traces from the frequency smoother tests of the
minimum-phase simple-smoothing method.  The length of the time smoother was held
constant at 0.5 seconds.
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Figure 12:  The |TVS| of the resultant traces from the time smoother tests of the minimum-
phase simple-smoothing method.  The frequency smoother was held constant at a length of
10 Hz.

The simple-smoothing method of TVSI seems to performs best when used with
small time and frequency smoothers.  Long smoothers bias the exponential attenuation
surface and distort the operator.  The |TVS| displayed in figure 11 and 12 show how the
high frequencies are lost, especially at later times, with longer time and frequency
smoothers.  From equation 4, we can see that the length of the frequency smoother in
the frequency domain is inversely proportional to its length in the time domain.  The
frequency smoother therefore must be small enough to allow its time-domain equivalent
to encompass the majority of the wavelet.  The wavelet is commonly about 0.2 seconds
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in length, so a 5 Hz smoother would completely encompass it.  Therefore, a frequency
smoother of length 10 Hz and a time smoother of length 0.5 seconds seems reasonable.
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Figure 13:  The length of the time and frequency smoothers were varied to determine how
they affected the output from the minimum-phase residual-smoothing version of TVSI.  The
length of the time smoother was held constant at 1.5 seconds while the length of the
frequency smoother, ∆f, was changed from 5 to 30 Hz.  The length of the frequency
smoother was held constant at 10 Hz while the length of the time smoother, ∆t, was varied
from 0.1 to 2.0 seconds.
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Figure 14: The |TVS| of the output traces from the frequency smoother tests for the minimum-
phase residual-smoothing method.  The length of the time smoother was held constant at 1.5
seconds.



Time variant spectral inversion

CREWES Research Report — Volume 9 (1997) 20-21

∆t=0.1

∆t=0.5 ∆t=1.0

∆t=1.5 ∆t=2.0

0

1.0

2.0

0 50 100
f requency (Hz)

t ime ( s)

0

1.0

2.0

0

1.0

2.0

0

1.0

2.0

0

1.0

2.0

0 50 100

0 50 100

0 50 100
0

1.0

2.0
0 50 100

bandlimite d reflectiv it y

15: The |TVS| of the output traces from the time smoother tests for the minimum-phase
residual-smoothing method.  The length of the frequency smoother was held constant at 10
Hz.

Based on the traces of figures 13 and the |TVS| in figures 14 and 15, a long time
smoother and a short frequency smoother seem reasonable for the minimum-phase
residual-smoothing method.  The residual-smoothing method models the residual
spectrum to be smoothed, as only containing the source waveform and reflectivity.  The
source waveform is stationary in time, however it is frequency dependent.  Therefore,
time smoothers should not adversely affect the spectrum of the source waveform.
However, the frequency smoothers should be kept short, so as not to distort this
spectrum.  As with the simple-smoothing method, the frequency smoothers must be
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short enough in the frequency domain that they will be long enough to encompass the
entire wavelet in the time domain.

The TVSI operator is determined from the data and not designed explicitly from a
value of Q.  The Q estimate is only used to remove an approximate attenuation surface
to form the residual spectrum, and this attenuation surface is replaced after the residual
spectrum has been smoothed.  This suggests that TVSI may be relatively insensitive to
errors in the estimate of Q.  Q is difficult to estimate in practice, and being able to
remove attenuation without an exact value of Q would be advantageous.  A noise-free
and multiple-free synthetic trace has been attenuated with a Q of 100.  This trace has
been input into TVSI with varying erroneous values of Q, as well as the correct value,
to determine how accurate a Q estimate must be to filter the trace satisfactorily.
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Figure 16:  The minimum-phase residual-smoothing method was tested for its sensitivity to
errors in the value of Q.  The input trace was created with a Q value of 100.  Then the trace was
deconvolved with minimum-phase residual-smoothing TVSI using various values of Q.
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Figure 17:  The |TVS| of the output traces from the Q-sensitivity tests in the minimum-phase
residual-smoothing method.

Estimating Q to be of a higher value than it actually is, still yields reasonable results
from TVSI (figures 16 and 17).  The attenuation surface is not entirely removed before
smoothing when the Q estimate is higher than the actual value.  The extreme case of this
would be not removing any part of the attenuation surface which is analogous to the
simple-smoothing version.  TVSI is also forgiving about estimating Q to be lower than
the actual value.  Errors in the estimate of Q will commonly fall within the range of Q
values that the TVSI algorithm is relatively insensitive towards.
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CONCLUSIONS

A nonstationary Fourier-domain deconvolution routine, TVSI, has been developed
as an extension of stationary Fourier domain deconvolution. It uses a data-dependent
operator derived from the time-variant amplitude spectrum of the input trace to
approximately correct for the effects of attenuation, dispersion, multiple effects and
source signature.  Two versions of the deconvolution method are available, and they
differ in the way the nonstationary spectrum of the input data is smoothed in the
operator design stage. The first version, the simple-smoothing method, directly
smoothes the |TVS| of the input trace. It yields a result similar to that of time-variant
spectral whitening (TVSW), however with two differences.  The operator can be
minimum phase.  The alternate version, the residual-smoothing method, is a type of
data-driven inverse-Q filter. The residual-smoothing process removes an estimated
exponential attenuation trend from the time variant amplitude spectrum of the input
trace, smoothes the residual spectrum and restores the exponential attenuation trend.
The resulting amplitude spectrum, from either version, can then be coupled with a
minimum-phase spectrum or left as zero phase before being inverted to form the inverse
operator.  The inverse operator is then applied to the trace using nonstationary filtering
techniques.  TVSI has an advantage over other inverse-Q filtering techniques.  It seems
to be robust with respect to the estimate of Q and the operator is continuously time
variant.  As well, TVSI can also handle waveform removal and certain classes of
multiples.
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