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ABSTRACT

Deriving a deterministic relationship between the seismic data and geological
properties of the subsurface is a difficult task. Using multi-regression analysis and
neural networks, we derive statistical rather than theoretical relationships. The
relationship is found at the well locations and applied to the exploration area covered
by seismic data.

Nine well locations in the Blackfoot area, Alberta, are used to derive relationships
between the measured sonic velocity and seismic attributes. Cross-validation tests are
used to determine the quality of the derived relationships. Using a neural network we
achieved the highest correlation between the measured and the predicted sonic logs:
0.87. 3-D sonic velocity volumes are generated and a low-velocity anomaly is
interpreted as a sand channel.

INTRODUCTION

Seismic data are often successfully used to derive structural information about the
subsurface and hopefully locate hydrocarbon traps. Deriving rock and reservoir
properties from the seismic data is another challenging task. A traditional approach is
to look for a theoretical relationship between the physical parameter and some
seismic attributes. For example, low impedance gas sands can cause anomalous
impedance contrasts that lead to bright spots. Another deterministic approach uses
amplitude-versus-offset (AVO) effects to find Poisson’s ratio anomalies. However,
the relationship between the physical parameter and the seismic attributes might  not
be obvious. Another pitfall is that the deterministic relationships are general and
might not be appropriate for a particular area. To overcome the problem, we choose
to derive statistical, rather than deterministic relationships. The approach is called
data-driven methodology (Schultz at al., 1994).

In this article, we discuss two methods, linear multi-regression analysis and neural
networks, which combine a well log property and seismic attributes to predict
property distributions. A field data example from the Blackfoot area, Alberta, is
presented. Nine sonic logs are used to find the relationship between the sonic velocity
and seismic attributes. Once found, it is applied to a 3-D seismic volume. The final
result is a 3-D volume, whose traces are predicted sonic logs. The “Emerge” software
package from Hampson-Russell Software Services Ltd. and the “Predict” neural
network program from NeuralWare Inc. are used in the current work.

1 Hampson-Russell Software Services Ltd.
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METHODOLOGY

In general, the relationship (in the time domain) between the log property and the
seismic attributes can be written in the following form:

P(x, y, t) = F[A1(x, y, t), A2(x, y, t), … , AM(x, y, t)]

where:

P(x, y, t) – log property as a function of coordinates x, y, t

F[…] – functional relationship

Ai – seismic attributes, i = 1, …, M

The functional relationship can be found using linear multi-regression analysis.
For N measured log property points, we have:

P1 = W1A11 + W2A21 + … + WMAM1 + WM+1

P2 = W1A12 + W2A22 + … + WMAM2 + WM+1

…

PN = W1A1N + W2A2N + … + WMAMN + WM+1

In matrix form:

P = WA

The weight matrix W is found by least-squares optimization.

Before applying the method, we have to choose which seismic attributes to use in
the analysis. One way to determine the best combination is to qualify the seismic
attributes according to their linear correlation with the predicted property. However,
if there is an inner linear relationship between some of the attributes, the chosen
combination may not be the optimal. A better approach is to find the smallest RMS
error between the known parameter and the predicted one from a particular
combination of seismic attributes. Using this criterion, we may determine the optimal
combination of seismic attributes for prediction of a particular log property.

A more advanced approach is to use convolution operators instead of constant
weights in the regression analysis:

P1 = W1 * A 1 + W2 * A 2 + … + WM * A M + WM+1

P2 = W1 * A 1 + W1 * A 2 + … + WM * A M + WM+1

…

PN = W1 * A 1 + W2 * A 2 + … + WM * A M + WM+1

where:
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Wi – convolution operator, i = 1, …,M.

WM+1 - constant

In a case of  an L-point convolution operator there are L • M unknown weights to
be determine by the least-squares optimization. The discussed method can  perform
well if the functional relationships between the predicted log property and the seismic
attributes are linear. In the case of nonlinear relationships, we may use neural
networks as a prediction tool based on nonlinear optimization techniques.

Figure 1 shows schematically the basic architecture of a multilayer feedforward
neural network. It consists of a set of neurons that are arranged into two or more
layers. There is an input layer and an output layer, each containing at least one
neuron. Between them there are one or more “hidden” layers. The neurons are
connected in the following fashion: inputs to neurons in each layer come from outputs
of previous layer, and outputs from these neurons are passed to neurons in the next
layer. Each connection represents a weight. In the example shown in Figure 1, we
have four inputs (four seismic attributes: A1, A2, A3, A4), one hidden layer
containing three neurons and an output neuron (representing the predicted log
property). The number of connections is 15, i.e. 15 weights. A neuron is characterized
by the weights, which multiply each input, and an activation function, which is
applied to the weighted sum of the inputs in order to produce the neuron’s output.
Mathematically the process is written as:

neuron’s output ∑
−

=
+=
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where:

wi – connection weights (wn is a constant called bias)

xi – neuron inputs

f – activation function, usually the sigmoid function

Figure 1: Basic neural network architecture.
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A neural network is completely defined by the number of layers, neurons in each
layer, and the connection weights. The process of weights estimation is called
training. Most of the training methods are based on the gradient back propagation
technique (Masters, 1993). A training data set is required and the weights are
modified iteratively so that the outputs of the network match closely the target
outputs.

BLACKFOOT FIELD EXAMPLE

As an example of the techniques described in the previous section, we present a
case study involving predictions of a sonic log in the Blackfoot field, Alberta
(Township 23, Range 23 W4M). A 3C-3D seismic survey was recorded in October,
1995, with a primary target the Glauconitic member of the Mannville group. The
reservoir occurs at a depth of 1550 m., where Glauconitic sands and shales fill incised
into the regional Mannville stratigraphy valleys.

Nine sonic logs from the covered area are tied with the seismic and converted to
time (Figure 2). The red line on the plot shows the chosen time windows.

Figure 2: Measured sonic logs in the Blackfoot area.

A  number of seismic attributes (Chen and Sidney, 1997) are extracted from the
seismic volume and cross-plotted with the sonic log samples over the chosen window.
Table 1 shows some of the extracted attributes, their correlation with the sonic
velocity, and the RMS prediction error between the real log and the predicted one
using a particular attribute. The time has the highest correlation ( showing a general
trend of sonic velocity increase with time), the next one is the inverted seismic trace,
integrated absolute amplitude, and so on.
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Attribute RMS error (m/s) Correlation

Time 349.7 0.517

Inverted trace 354.6 0.497

Integrated absolute amplitude 398.8 0.218

Amplitude weighted phase 399.5 0.211

Derivative 400.6 -0.197

Instantaneous phase 400.7 0.196

Integrate 403.1 0.164

Dominant frequency 403.8 0.153

Average frequency 403.9 0.152

Cosine instantaneos phase 406.2 -0.110

Table 1: Seismic attributes showing the best correlation with the sonic logs.

Table 2 shows the optimal 8-attribute combination as a result from multi-
regression analysis. First, the best single attribute is determined (time), then the best
pair of attributes (time and inverted seismic trace), then the best triplet and so on.
Note that the order in Table 2 is not the same as in Table 1. At this point we have to
answer the question: How many attributes should we use in the prediction process?
Adding more attributes may lead to overpredicting, i.e. predicting the noise in the
sonic logs.

Figure 3 is a plot of the average RMS error as a function of the number of seismic
attributes used in the multi-regression analysis. The lower black line is the RMS
prediction error using all wells in the calculation. The upper red line is called
validation error. It is calculated by averaging the result of “hiding” a well and
predicting its value using the rest (cross-validation analysis). The red line is used to
make the decision how many attributes to use in the prediction process. Obviously
adding the attributes beyond the 5-th one did not decrease the validation error, so we
choose to use the first 5 attributes.

Figure 4 shows the cross-validation test using the optimal 5-attribute combination
at 09-08, 01-17, and 12-16 locations. The measured sonic logs are plotted in black
and the predicted one is plotted in red. The average correlation between the predicted
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logs and the measured logs for all nine well locations in the area is 0.64 and the
average RMS error is 313 m/s.

Attribute RMS error (m/s)

Time 347.7

Inverted trace 323.2

Cosine instantaneous phase 318.9

Amplitude envelope 314.2

Instantaneous frequency 310.2

Average frequency 308.8

Second derivative 307.8

Instantaneous phase 307.3

Table 2: Optimal 8-attributte combination.

Figure3: RMS average error vs number of seismic attributes.
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Figure 4: Measured logs (in black) and predicted logs (in red).

The same analysis was performed using a 9-point convolution operator with a 4-
point lag. Table 3 shows the optimal 8-attribute combination .

Figure 5 is a plot of the average RMS velocity as a function of the number of
seismic attributes used in the analysis. The first 5 attributes were chosen for the
prediction process. Note that by adding the 6-th attribute, we actually increase the
validation error.

Figure 6 shows the cross-validation test using the optimal 5-attribute combination
at 09-08, 01-17, and 12-16 well locations. The measured sonic logs are plotted in
black and the predicted ones are plotted in red. The average correlation between the
nine predicted logs and the real ones is 0.76 and the average RMS error is 267 m/s.



Todorov, Hampson, and Russell

39-8 CREWES Research Report — Volume 9 (1997)

Attribute RMS error (m/s)

Inverted trace 343.1

Amplitude weighted cosine phase 310.9

Time 269.7

Cosine instantaneous phase 253.9

Average frequency 248.6

Amplitude envelop 243.7

Amplitude weighted frequency 239.4

Instantaneous frequency 234.6

Table 3: Optimal 8-attribute combination using a 9-point convolution operator.

Figure 5: RMS average error vs number of seismic attributes using  a convolution operator.
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Figure 6: Measured logs (in black) and predicted logs (in red) using convolution operator.

The next step in our analysis is to apply a neural network. Neural networks are
very powerful tools, but should be used with care. The main pitfall is to overteach, i.e.
to train the network to predict the very fine details in the training set. In the case of
noisy data, this could lead to significant errors. One way to overcome the problem is
to divide the available data into training and testing data sets. The training data set is
used to train the network and the testing data set is used to evaluate its performance.

In the current case, the result from the multi-regression analysis with a 9-point
convolution operator is used to train the network. The total number of cases (the
number of measured log samples), 748, is divided into training data set, 523 cases,
and testing data set, 225 cases (30%). The structure of the neural network is: 45
inputs, 9 neurons in the “hidden” layer, and 1 output. Table 4 shows the results from
the training process.

Figure 7 is a plot showing the application of the trained network at the well
locations 09-08, 01-17, and 12-16. The real logs are shown in black and the predicted
ones in red. The average correlation is 0.87 and the average RMS error is 204 m/s.
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Data Correlation RMS error Records

All 0.87 196 748

Train 0.89 183 523

Test 0.83 223 225

Table 4: Results from the neural network training.

Figure 7: Measured logs (in black) and predicted logs (in red) using a neural network.

The derived functional relationships from the three techniques are applied to the 3-
D seismic volume and three 3-D velocity models are generated. Figures 8, 9, and 10
are plots of inline 96 extracted from the volumes. It crosses the producing oil well 08-
08 at CDP number 124. The low-velocity anomalies around 1070 ms are interpreted
as sand bodies. Note the higher resolution in Figures 9 and 10 compared with Figure
8.
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Figure 8: Sonic model using 5 attributes, inline 96.

Figure 9: Sonic model using 5 attributes and a 9-point convolution operator, inline 96.
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Figure 10: Sonic model using neural network, inline 96.

CONCLUSIONS

Linear multi-regression analysis and neural networks can be used successfully to
derive log properties from seismic attributes. Cross-validation tests used to evaluate
the predicting process showed good correlation between the predicted model and the
measured log property – sonic velocity. Using convolutional operators instead of
constant weights improved the cross-validation correlation by 11%. Using  neural
network as a prediction tool we achieved the highest correlation: 0.87.
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