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A recipe for stability analysis of finite-difference wave
equation computations

Laurence R. Lines, Raphael Slawinski and R. Phillip Bording*

INTRODUCTION

Finite-difference solutions to the wave equation are pervasive in the modeling of
seismic wave propagation (Kelly and Marfurt, 1990) and in seismic imaging (Bording
and Lines, 1997).  That is, they are useful for the forward problem (modeling) and the
inverse problem (migration). In computational solutions to the wave equation, it is
necessary to be aware of conditions for numerical stability. In this short note, we
examine a convenient recipe for insuring stability in our finite-difference solutions to
the wave equation. The stability analysis for finite-difference solutions of partial
differential equations is handled using a method originally developed by Von
Neumann and described by Press et al. (1986, p. 827-830).

DERIVATION OF A RECIPE FOR STABILITY

For our discussions, we consider  the wave equation for a homogeneous acoustic
medium, which in 3-D is given by:
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where ),,,( tzyxu  is the pressure wavefield as a function of space and time and v  is
the acoustic velocity.  Finite-difference computations require determinations of
spatial and temporal sampling criteria.  As pointed out by Kelly and Marfurt (1990),
Mufti (1990) and others, spatial sampling is generally chosen to avoid grid dispersion
in solutions.  Then, having chosen spatial sampling, the temporal sampling is chosen
to avoid numerical instability.

Recent papers by Mufti (1990) and  Wu et al. (1996) derived stability criteria for
three-dimensional finite-difference solutions to the wave equations for second order
and fourth order systems.  While these papers are correct, there is apparently a
general recipe for a stability criterion  which is generally applicable for arbitrary
orders of accuracy and spatial dimensions. For the moment, we will facetiously call
this condition “Bording’s conjecture”.  The criterion states that for a grid size of h , a
time sampling interval of ∆t , a seismic velocity of v , the stability formula for finite-
difference computation is given by:
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Here 1a  = sum of absolute values of weights of the finite-difference operator for
22 tu ∂∂ , and 2a  = sum of absolute values of weights for the finite difference

approximations to u2∇ .  We present here a heuristic proof of this criterion for second
order time differences, since for approximations to 22 tu ∂∂ , the second order
differencing operator of (1,-2,1) is almost always used, our proof will be for the
stability criterion where 41 =a . That is, we shall prove the result that:
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To convince ourselves of the correctness of this result, we examine some of the
familiar stability results in Table 1 for the cases of second and fourth order spatial
differencing in 1-D, 2-D, and 3-D cases.  Having the correct predictions by using the
formula in (2), we now proceed with a proof of this result.

Table 1 . Stability limits for 2-D and 3-D models using 2nd and 4th order finite differences.

Dimension 2nd Order 4th Order

1-D 1 23

2-D 21 83

3-D 31 21

Following  the stability discussions of Mufti (1990) and Wu et al. (1996), we

consider a Fourier component of the computational error , n
ijkε  at the (i,j,k) grid point

and at time step n . For the grid spacings zyx ∆∆∆ ,, , the Fourier component of the
computational error is given by:

zrkyqjxpinn
ijk eee ∆∆∆Γ= ιιιε (3)

where 1−=ι and spatial wavenumbers in zyx ,,  are denoted by rqp ,, . nΓ  is the
Fourier amplitude at a particular time step n .

Although strictly speaking, computational error equals the sum of complex
exponentials, it is sufficient for stability analysis that we consider a specific Fourier
component as given in (3).  For simplicity, we will deal with a uniform grid by setting

.hzyx =∆=∆=∆  Therefore, our goal is to select values of h  and t∆  such that
stability is satisfied for arbitrary spatial dimensions and orders of finite-difference
approximations.
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Let the computed wavefield be u , let the exact wavefield be U  and let the
computational error be ε , so that ε+= Uu , and ε  satisfies the numerical solutions
to the wave equation (1) as well.

In order to generalize the results of Wu et al. (1996), we express the values of
second derivatives such as 22 xu ∂∂ , 22 yu ∂∂ , and 22 zu ∂∂ in terms of weighted
sums of values of u  about a grid point ),,( kji .  Let the spatial weights for the second

derivatives in the yx,  and z  directions be ,mw mwúúú , and mw~ respectively.  That is,

the second partial derivative in x for the wavefield is given by:
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For second order systems, 1=M  and ),,( 101 www−  is given by (1,-2,1).  For

fourth order systems, 2=M  and ),,( 210,1,2 wwwww −−  is given by 1/12(-1,16,-

30,16,-1). (Detailed derivations of these operators are given by Kelly, 1998).
Similarly for 22 tu ∂∂ , we have the difference equation given by:
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For our discussions, we will consider only second order systems in time such that
1=L  and ),( 1,01 WWW−  is given by (1,-2,1).  Given that the error in our wavefield

calculations also satisfies equation (1), we can write the error wavefield equation in
the following form by using ε  in place of u  in equations (4), (5), and (1). This
produces:

ln
kji

L

Ll
l

n
mkjim

n
kmjim

n
kjmi

M

Mm
m W

tv
www

h

+

−=
+++

−=
∑∑

∆
=++ ,,22,,,,,,2

1
)~(

1 εεεε úúú (6)

In order to analyze the Fourier components of the error, we then substitute

equation (3) into equation (6) and divide by )( rkqjpihe ++ι to obtain an expression for
the amplitude of the sinusoidal component as a function of time steps.
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For second order approximations to the wave equation, the right hand side of (7)
would be given by:
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This allows us to rewrite equation (7) in a simpler form as:

nnn AΓ+Γ−=Γ −+ 211 (9)
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Equation (9) has been analyzed for stability in a couple ways.  One method due to
Mufti (1990)  provides a sufficient condition for stability by considering the ratio of
the error Fourier amplitudes as a function of time steps.  That is, Mufti (1990)
considers this ratio as 11 −+ ΓΓ=ΓΓ= nnnnγ  to be the ratio of successive iterations.

Therefore we can insure stability by requiring that 1≤γ . We can consider the

stability in terms of γ  by dividing equation (9) by 1−Γn  to obtain:

0122 =+− γγ A (11)

such that  12 −±= AAγ .

Stability is assured if  -1 1≤≤ A .  This requirement on A yields the result that
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As indicated by the computational results of Wu et al. (1996) and by Smith (1965,
p. 72) the useful inequality is the left hand side of (12).  If we multiply equation (12)
by –1, we obtain:
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Now due to the triangle inequality that the absolute value of a sum is less than the
sum of the absolute values, we can use the fact that:
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and from (13) we can see that a sufficient condition for stability is the result which we
wished to prove. Stability is assured if 
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where mm
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úúú  is defined as the sum of the absolute values of the

weights of the spatial derivatives as given by the right hand side of (14).

We will note that equation (15) produces the familiar results for second and fourth
order methods in both 2-D and 3-D.  Let us check out the results.  For example, for
second order in 2-D, the second derivative operator is (1,-2,1), the value of 2a  would

be (1+2+1) + (1+2+1) or 8. Therefore, this gives 212 2 =a  and this requires the

value of 21≤∆ htv , which is a familiar result given by Mitchell and
Griffiths(1980). For second order methods in general, we see that each spatial
dimension adds a value of 4 in the denominator and we essentially have the stability
result which is in agreement with the Courant condition that nhtv 1≤∆  where n
is the dimensionality in space (Mitchell and Griffiths, 1980).

For the fourth order methods in space, the derivative operator is a five point
operator given by 1/12(-1,16,-30,16,-1), so that the bounds on htv∆  for 2-D and 3-D

would be 83  and 21  respectively, which are results proven by Wu et al. (1996).

CONCLUSIONS

The heuristic derivation of the useful stability formulae in equation (15) is an
extension of the discussions by Mufti (1990) and Wu et al. (1996).  Along with a
criterion for avoiding grid dispersion, this stability recipe allows us to choose proper
space and time sampling for the finite-difference computations used in seismic
modeling and imaging.
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LIST OF SYMBOLS

),,,( tzyxu  = pressure wavefield as a function of spatial coordinates ),,( zyx  and
time t .

v  = acoustic velocity of medium.

t∆  = temporal sample interval.

h= grid spacing of finite difference mesh for uniform grid.
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=∆∆∆ zyx ,, grid spacings in the zyx ,,  directions

n
ijkε = Fourier component of error for the ),,( kji  grid point and the nth time step.

nΓ  = Fourier amplitude of computational error.

γ = ratio of successive Γ values.

=rqp ,, spatial wavenumbers in zyx ,,  directions.

mmm www ~,, úúú = spatial weights for difference approximations to second derivatives in
the zyx ,,  directions.

kw = temporal weights for second partial derivatives in time.

1a = sum of absolute values of temporal weights for derivatives.

2a = sum of absolute values of spatial weights for derivatives.
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