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ABSTRACT

Explicit wavefield extrapolators are based on direct analytic mathematical formulae
that express the output as an extrapolation operator acting on the input. Implicit
techniques require an equation to be solved, or a matrix decomposed or inverted, to
accomplish the extrapolation. Typically, explicit methods are faster and often give more
insight into the physics of the wave propagation; but can suffer from instability.
Implicit operators are often unconditionally stable.

Four different explicit extrapolators based on Fourier theory are presented and
analyzed. They are: PS (ordinary phase-shift), PSPI (phase shift plus interpolation),
NSPS (nonstationary phase shift), and, new in this paper, SNPS (symmetric
nonstationary phase shift). The PS extrapolator is well known to be exact for constant
velocity, unconditionally stable, but inapplicable for variable velocity. PSPI was
originally formulated as an interpolation between sets of PS wavefields but it can be
formulated as a nonstationary combination filter (or equivalently a pseudodifferential
operator). NSPS is similar to PSPI but is a nonstationary convolution filter that gives it
different properties. PSPI and NSPS both adapt very rapidly to local lateral velocity
changes. When the lateral velocity variation is piecewise constant, NSPS and PSPI
reduce to simple operations involving spatial windowing, extrapolation with the PS
operator, and superposition. For NSPS, windowing precedes extrapolation while for
PSPI it is the reverse.

NSPS and PSPI both lead to analytic expressions for wavefields in heterogeneous
media that approximately solve the variable velocity wave equation. Their error terms
are fundamentally different in character but vanish for constant velocity.

A formal proof is given that NSPS in a direction orthogonal to the velocity gradient
is the mathematical adjoint process to PSPI in the opposite direction. This motivates the
construction of SNPS that combines NSPS and PSPI in a symmetric fashion. This
symmetry (under interchange of input and output lateral coordinates) is required by
reciprocity arguments. PS and SNPS are symmetric while NSPS and PSPI are not.

An extensive numerical stability study using SVD (singular value decomposition)
shows that all of these extrapolators can become unstable for strong lateral velocity
gradients. Unstable operators allow amplitudes to grow unphysically in a recursion.
Stability is enhanced by introducing a small (~3%) imaginary component to the
velocities. This causes a numerical attenuation that tends to stabilize the operators but
does not address the cause of the instability. For the velocity model studied (a very
challenging case) PSPI and NSPS have exactly the same instability while SNPS is
always more stable. Instability manifests in a complicated way as a function of
extrapolation step size, frequency, velocity gradient, and strength of numerical
attenuation. The SNPS operator can be stabilized over a wide range of conditions with
considerably less attenuation than is required for NSPS or PSPI.
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INTODUCTION

Wavefield extrapolation methods are often categorized as either explicit or implicit.
Explicit techniques are those which give a direct mathematical form for the extrapolation
operator while implicit methods prescribe an equation which must be solved
(numerically) to determine the extrapolated wavefield. Both forms are familiar from
finite difference solutions to the wave equation as pioneered by Claerbout (1976).
Explicit solutions are valued for their direct simplicity and are often quick to calculate;
however, they are often unstable. In this context, a stable wavefield extrapolator is one
that controls the amplitude of the extrapolated wavefield under recursive application. In
a wavefield marching scheme, the wavefield after n steps can be represented as Ln(ψo)

where ψo is the initial wavefield and Ln represents n applications of a (linear)
extrapolator. The number of steps is often very large (thousands) and an extrapolator
that allows even a small percentage of unphysical growth with each step can lead to
wildly uncontrolled amplitudes. Implicit schemes are often formulated to provide a
perfectly stable extrapolator but can be difficult to implement efficiently due to the need
to solve a set of linear equations at each step.

The prototypical explicit extrapolator is the phase-shift extrapolator of Gazdag
(1978). This method, which is exact for constant velocity scalar waves, proceeds with
a forward Fourier transform of the input wavefield, then a phase-shift operator is
applied, and the result is inverse Fourier transformed. Symbolically, this is

(1)

where FT and IFT are forward and inverse Fourier transforms and exp(ikzz) is the
wavefield extrapolator. Equation (1) is written for a monochromatic wavefield (a single
temporal frequency) and can be extended to broad-band data with a temporal Fourier
transform. The vertical wavenumber kz is computed from the simple dispersion relation

(2)

where ω is temporal frequency and v is the (constant) velocity. This procedure is
perfectly stable since the extrapolator has unit magnitude for real kz and is a decaying
exponential otherwise.

For variable velocity, the extrapolator is usually formulated for v(x) only (i.e.
∂v/∂z=0) and vertical velocity variations are addressed through recursion. A typical

implementation is done in the ω-x domain and the extrapolator is formulated by

expanding exp(ikzz) as a power series in kx and then replacing kx by i∂/∂x (e.g.
Berkhout, 1984). A practical implementation terminates the series at some order “m”
and the result is an mth order differential operator with variable coefficients (powers of
v(x)). Such an operator is then approximated with finite differences.

An alternative to this method is the PSPI (phase-shift plus interpolation) technique
of Gazdag and Squazerro (1984). PSPI accomplishes an approximate extrapolation
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through v(x) using a suitable set of reference velocities {vj}. For each reference
velocity, a constant-velocity phase-shift extrapolation is computed and, by interpolating
these into a single result, the extrapolation through v(x) is simulated.

Etgen (1994) argued that PSPI is equivalent to an ω-x method with a very long
operator and showed that such methods can become unstable in complex velocity
settings. He proposed a numerical technique to examine the stability of such
extrapolators. Formulating the extrapolator as a square matrix of dimension nx by nx
(where nx is the number of discrete spatial locations on a seismic line) he used SVD
(singular value decomposition) to compute the singular values of the extrapolation
matrix. Stability is indicated by singular values less than unity while any singular value
in excess of unity causes instability. Figure 1 is from Etgen’s paper and shows an
example of an unstable extrapolation through an extreme velocity model. Etgen noted
that this is an unusual case and that explicit methods generally behave well.

Wapenaar and Grimbergen (1998) extended this stability analysis to their method of
modal decomposition for the design of one-way extrapolators (Grimbergen et al,
1998). They argued that much of the instability in the explicit ω-x methods arises
because the extrapolation matrix is not symmetric, while reciprocity considerations
require that it should be so. They showed that modal decomposition leads to operators
which are unconditionally stable. The design of such operators requires an eigenvalue
decomposition of the Helmholtz operator and is therefore not explicit.

Margrave and Ferguson (1997) presented an analytic expression for the most
accurate form of PSPI, thereby making it a truly explicit method, and also introduced
another method called NSPS (nonstationary phase shift). PSPI and NSPS were shown
to be complementary forms of nonstationary filters and it was suggested that NSPS
might be preferable as it is conceptually similar to Huygen’s principle while PSPI is
not.

In this paper, we will briefly review PSPI and NSPS and then present a number of
new developments. We will show that both PSPI and NSPS build approximate
solutions to the variable velocity wave equation but with different error terms. Then,
we present a proof that PSPI and NSPS are the mathematical “adjoints” of one another.
Specifically, extrapolation with NSPS in a given direction is the adjoint of extrapolation
with PSPI in the opposite direction (and vice-versa). This result has implications for
stability and suggests that a self-adjoint (e.g. Hermetian) process might be formulated
by combining NSPS and PSPI into a single algorithm. We give an example of this
combined algorithm and call it SNPS (of course). Finally we present an SVD stability
analysis of these methods for the same velocity model explored by Etgen (1994). We
show that NSPS and PSPI have exactly the same degree of instability but that SNPS is
dramatically more stable. We show that the incorporation of a small imaginary
component of velocity leads to a numerical dispersion that increases the stability of all
of theses methods. We present a numerical exploration of the stability behavior of these
methods as a function of dz step, frequency, and magnitude of the imaginary
component of velocity.
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REVIEW OF PSPI AND NSPS

This section is replicated from our paper “Nonstationary filters, pseudodifferential
operators, and their inverses” which appears elsewhere in this research report. It is
repeated here for convenience. We define two explicit integral operators for wavefield
extrapolation and show their complementary nature. The presentation uses the language
of nonstationary filters as presented in Margrave (1998).

PSPI defined

The first operator is the logical extension of the phase-shift-plus-interpolation
(PSPI) method of Gazdag and Squazerro (1984). PSPI accomplishes an approximate
extrapolation through v(x) using a suitable set of reference velocities {vj}. For each
reference velocity, a constant-velocity phase-shift extrapolation is computed and, by
interpolating these into a single result, the extrapolation through v(x) is simulated.
Logically, this process can be taken to the limiting case of an “exhaustive set” of
references velocities which means {vj} contains an entry for each distinct value of v(x).
In this limit, the details of the interpolation process become irrelevant and the PSPI
method converges to

(3)

where ϕ(kx,0,ω) is the forward Fourier transform of ψ(x,0,ω),

, (4)

and α(kx,x,z) is the nonstationary wavefield extrapolator given by

. (5)

ψPSPI is a nonstationary combination filter, which equation (3) gives in the mixed form
as a generalized inverse Fourier integral. For the remainder of this paper, when the term
PSPI is used it will refer to these generalized equations.

NSPS defined

The second wavefield extrapolation operator is the nonstationary convolution “dual”
of PSPI as given above. Called nonstationary phase-shift (NSPS) it is given by

(6)

where α(kx,x,z) is again given by equation (5) and
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. (7)

Notice that NSPS applies α(kx,x,z) simultaneously with the forward Fourier transform
(from x to kx). In contrast, PSPI applies the same nonstationary wavefield extrapolator
with the inverse Fourier transform (from kx to x).

The windowing analog for PSPI and NSPS

The windowing analog results in very simple expressions for these two
extrapolators. It can be derived by assuming that v(x) is piecewise constant with a
countable number of segments. If vj denotes any of the constant velocities, then define
the window set {Ωj} such that Ωj(x)=1 if v(x)=vj and is zero otherwise. Then ψPSPI may
be expressed symbolically as from

(8)

where αj is a wavefield extrapolator for constant velocity vj. Similarly, NSPS becomes

. (9)

Notice that the only difference between these expressions is the location of the
windows. It is also interesting to compare them to ordinary phase-shift extrapolation as
given by equation (1). Figures 2 and 3 illustrate these processes for the case of upward
wavefield extrapolation (i.e. wavefield modeling).

PSPI AND NSPS AS APPROXIMATE SOLUTIONS TO THE WAVE
EQUATION

It is of interest to examine the magnitude and form of the error terms that arise when
the PSPI and NSPS phase-shift integrals (equations 3 and 6) are substituted into the
monochromatic scalar wave equation

. (10)

Here it is assumed that the velocity field depends only on the lateral coordinate. For this
purpose, we will first reformulate PSPI and NSPS as full space-domain processes
rather than as mixed domain.

For PSPI, substitute equations (4) and (5) into (3) to get

(11)

Similarly, for NSPS we substitute equation (6) into (7) which gives
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. (12)

Equations (11) and (12) are directly comparable with the only difference being
whether kz depends on the input or output horizontal coordinate. We wish to investigate
how well each solves the wave equation (10).

PSPI formulae

To this end, compute the second partial derivative with respect to z and x of the
PSPI formula:

(13)

and

(14)

then

(15)

and

 
(16)

which becomes

(17)

The wave equation requires the sum of equations (14) and (17)

(18)

which is
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(19)

The double integral on the right-hand-side of equation (19) represents the error term of
PSPI. Note that it will vanish for constant velocity as all terms contain velocity
gradients through ∂kz/∂x.

NSPS formulae

For NSPS, the z derivative works similarly but the x derivative is much simpler
because kz does not depend on x.

(20)

and

(21)

So the sum of (20) and (21) gives

(22)

or

(23)

which can be rewritten as

(24)

The NSPS error term is also a double integral but of significantly different character
than that for PSPI. Note the absence of explicit velocity derivatives. This error term
also vanishes identically for constant velocity.

In a sense, equation (23) shows that NSPS relates the Laplacian at finite z to the
NSPS extrapolation of the Laplacian at z=0. Thus, we expect the error term in NSPS to
depend on the size of the depth step more strongly than the velocity gradient.
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PROOF OF ADJOINT RELATIONSHIP

A wavefield extrapolation operator is an example of a member of the abstract class
of linear mathematical operators. The concept of an adjoint operator is fundamental to
the study of the behavior of abstract operators because operators that are self-adjoint
(also called Hermetian) can be shown to have a complete set of orthogonal eigenvectors
and real eigenvalues. This means that a self-adjoint operator, LH, can always be
decomposed as LH=UΛUH where UH is the Hermetian conjugate (i.e. complex-

conjugate transpose) of U, U is a unitary matrix (UHU=UUH=1), and Λ is a diagonal

matrix of eigenvalues, λ. If none of the λ’s vanish, then LH
-1=UΛ-1UH and the inverse

is easily calculated. Furthermore, Wapenaar and Grimbergen (1998) show that the
stability requirement for self-adjoint operators is simply |λ|<1.

If we let LP be the linear operator that accomplishes PSPI and LN be a similar
operator for NSPS, then we can write these processes as

(25)

and

. (26)

If L is any linear operator, then the adjoint of L, LA is defined by (Stein, 1993)

(27)

where < > defines an inner product integral given by

(28)

and * indicates complex conjugation. Using these expressions, the adjoint operator for
LP must satisfy

. (29)

Using equation (25) the bracket on the left-hand-side of equation (29) expands as

. (30)

Upon interchanging the order of x and x’ integrations this can be manipulated into

 . (31)

The expression in square brackets should be compared to equation (26) which shows it
to be an NSPS operation using the complex-conjugate extrapolator. Inspection of
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equation (5) shows that complex conjugation is equivalent to reversing the sign on “z”
which means the direction of extrapolation is changed. Using + and – subscripts to
indicate the direction of extrapolation, the desired adjoint of LP is then

(32)

Thus the adjoint process to PSPI is NSPS in the opposite direction and vice-versa.

THE COMBINED EXTRAPOLATOR

The preceding analyses all suggest a complementary relationship between NSPS and
PSPI so it seems natural to try to combine them into a single downward continuation
process. As motivation, observe that NSPS has the physical interpretation (Figure 4a)
of wavefield propagation by “emission” from the upper datum while PSPI (Figure 4b)
has the interpretation of extrapolation by “reception”. In other words, NSPS “pushes
out” a Huygen’s wavefield from each input point using the local velocities at the input
location while PSPI “pulls in” wavefield energy to each output point using the local
velocities at that output location. A combined process is suggested in Figure 4c where
the first half of the extrapolation is done with NSPS and the second half with PSPI.
This new method will be called symmetric nonstationary phase shift or SNPS.

Comparison of equations (3) and (6) shows that the desired SNPS form can be
derived by substituting (6) into (3) with z/2 replacing z in each extrapolator and taking
care to separate input and output coordinates. This leads to

(33)

where

(34)

and a similar expression for . The apparent complexity of equation (33) can

be lessened by incorporating both extrapolators into a single term

(35)

where

(36)

is the combined extrapolator in the space domain. Equation (34) becomes a matrix-
vector multiplication for discretely sampled data and equation (35) is an explicit
expression for the extrapolation matrix. For completeness and ease of comparison, we
present the alternate forms of ∆(x′,x,z) for the other algorithms. For NSPS, both α’s
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in the integrand are given x′ dependence and they combine into a single extrapolator to
give

. (37)

For PSPI, a similar result is obtained except the α dependence is on x

. (38)

In the case of simple constant velocity phase-shift, both α’s lose their x dependence
entirely and the result is

. (39)

Comparison of equations (36) through (39) reveals an important point: only the SNPS
extrapolator (equation 36) and the constant velocity result (equation 39) are symmetric
under the exchange of x and x′ (this assumes that velocity is independent of z so that
v(x,z)=v(x,0)). According to Wapenaar and Grimbergen (1998) this symmetry is
required by reciprocity. The proof for equation (36) simply requires the exchange of x
and x′ and then a replacement of kx by –kx. Since α depends on the square of kx, this
last step merely absorbs the sign change in the complex exponential that is caused by
the variable exchange. Though the SNPS and PS operators are symmetric, they are not
self-adjoint.

An alternate viewpoint follows from the windowing analog. In this case, SNPS
becomes

. (40)

In this expression, primes are used to distinguish quantities dependent on input
coordinates and α j

1/2 is the extrapolator of equation (34) evaluated for the constant
velocity vj. This expression makes clear the splitting of the extrapolation operator into
an operation on input and another on output, which gives intuitive basis to its
symmetry.

STABILITY ANALYSIS

Etgen (1994), Dellinger and Etgen (1996), and Wapenaar and Grimbergen (1998)
all made important contributions to the stability analysis of explicit extrapolation
operators. Etgen showed an explicit numerical example of instability and used SVD
(singular value decomposition) to relate the occurrence of instability to singular values
of magnitude greater than unity. If L is a discrete extrapolation matrix, then its SVD is
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(41)

where U is composed of the eigenvectors of LLH, V is built form the eigenvectors of
LHL, both U and V are unitary (e.g. UUH=UHU=I and similarly for V), and S is a
diagonal matrix containing the non-negative singular values, s.

According to Wapenaar and Grimbergen, an extrapolation operator is
unconditionally stable if, for any vector ψ,

(42)

where the double vertical bars indicate a norm. Substitution of equation (41) in (42)
gives

(43)

The last expression, which follows because the norm of a unitary matrix is 1 and the
norm of a diagonal matrix is its largest absolute value (Strang, 1993, p384), gives the
stability condition. Thus, for complete stability, the largest singular value must be less
than one. It is easily shown that the PS extrapolator (equation 39) is unconditionally
stable.

We do not yet have a complete, analytic, stability analysis of the operators
prescribed by equations (36) through (39) so we will follow Etgen and present a
numerical study using SVD software. Figure 5 shows a velocity model similar to the
Etgen model that we will use for this analysis. Figure 6 shows the singular values of
NSPS, PSPI, and SNPS for a monochromatic extrapolation (25 Hz) over a 30 m
vertical step through the sediment column model of Figure 5. This and the following
simulations all used a horizontal spatial sample rate of 30m. Many of the singular
values are precisely unity but a few are greater which indicates the instability noticed by
Etgen. The decay of values numbered above 40 is due to evanescent energy. PSPI and
NSPS show nearly identical instability while SNPS is somewhat better.

A simple strategy to improve stability is to make the extrapolation operators slightly
dissipative. (This is a practical approach that does not address the theoretical reasons
for the problem in the first place.) Dissipation is introduced by giving the velocity
function a small complex part. That is v(x) is replaced by vc(x)=v(x)+iηv(x) where η is
a small number on the order of .01 . This can be shown to introduce attenuation that
increases with traveltime. (In the theory of visco-elasticity, the visco-elastic
correspondence principle states that any elastic theory can be made visco-elastic by
formulating it in the frequency domain with complex-valued elastic parameters.)
Then, α(kx,x,z) is computed as

(44)

where
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(45)

Figure 7 shows a repetition of the experiment of Figure 6 with the complex velocity
factor, η, set to .03. The immediate effect is to reduce all of the singular values. NSPS
and PSPI still have some instability while SNPS has become completely stable.
However, this is not a general proof of stability and a similar calculation for 50 Hz
(Figure 8) and 12.5 Hz (Figure 9) reveals that lower frequencies are less stable than
higher frequencies.

The foregoing suggests that the stability question is multifaceted. A more complete
investigation, but which is still dependent on a single assumed velocity model, is
shown in Figures 10 through 13. Figure 10 shows the largest singular value from each
of a series of tests like those shown in the previous figures. Here, the dz step was fixed
at 30m and frequency at 12.5 Hz and the percentage of imaginary velocity, 100η, was
varied from 0 to 10%. NSPS and PSPI did not become fully stable until 4% while
SNPS stabilized earlier at just above 2%.

In Figure 11, η was fixed at .03 (3%) and frequency again at 25 Hz while the dz
step was varied from 0 to 150 m. NSPS and PSPI were unstable for dz steps less than
70m while SNPS was stable for the entire range. The reason for the increasing stability
with increasing step size is probably that the numerical attenuation has progressively
greater effects.

Figures 12 and 13 are two different studies of the frequency dependence of the
instability. Both figures had η of .03 and Figure 12 shows results for a dz step of 25 m
while Figure 13 is for a dz of 75m. Again SNPS is much more stable than the other
two algorithms. The oscillations of the SNPS curve are noteworthy but we offer no
explanation.

Finally, Figures 14 through 21 show the results of a wavefield extrapolation
experiment using NSPS, PSPI, and SNPS extrapolators. In each case, twenty
extrapolation steps were taken through the “sediment column” model (marked “a” in
Figure 5) and a further twenty through a homogeneous sediment layer (marked “b” in
Figure 5). The extrapolators were run with η of .03 and a dz step of 30m.

Figure 14 shows the NSPS result after twenty 30m steps through the sediment
column velocity model. The delayed central portion of the wavefield is clearly evident
in 14a as are other “diffraction” events associated with the column. The clearly defined
evanescent boundary in 14b corresponds to the fast salt velocity while the slight energy
outside this is not evanescent leakage (as with PSPI) but is wavefield energy in the
slower sediment column. Figure 15 shows the wavefield of Figure 14 after a further
twenty steps through a homogeneous layer beneath the salt. The decrease in energy at
higher wavenumbers and frequencies is due to wavefront spreading.

Figures 16 and 17 were generated with PSPI and compare directly with Figures 14
and 15 respectively. PSPI shows slight evanescent leakage and slightly different
character in the sediment column (compare Figures 16 and 14).
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Figures 18 and 19 were generated with SNPS. Figure 18 compares with Figures 14
and 16 while Figure 19 compares with 15 and 17.

It is difficult to discern any visual evidence of instability in these figures. The
instability caused by a singular value of 1.05 over twenty steps grows to only 1.0520 or
about 2.7. Differences between all of these figures are subtle so their numerical
differences are displayed in Figures 20 and 21. Figure 20 shows differences between
the results after twenty steps through the sediment column model while Figure 21
shows differences between the results after a further twenty steps in the homogeneous
model. In each figure a) and b) are the difference between SNPS and NSPS or PSPI
respectively. These appear to be roughly reverse polarity versions of one another. The
differences between PSPI and NSPS are in c) and are the largest in each case. For
interest, d) shows the difference between SNPS and the average of NSPS and PSPI.
The smallness of this result indicates that SNPS is somewhere between NSPS and
PSPI in behavior but is not simply their average. It is also interesting to note that the
differences between the algorithms, though generated solely by the sediment column,
persist into the homogeneous layer and seem to become stronger.

CONCLUSIONS

The NSPS and PSPI wavefield extrapolators are fundamentally complementary.
NSPS “pushes out” a wavefield from its initial position while PSPI pulls the wavefield
into its final position. Both can be used as one-way wavefield extrapolators to construct
approximate solutions to the variable-velocity wave equation, though the error terms are
distinctly different.

A formal mathematical proof shows that extrapolation with NSPS in a direction
orthogonal to the velocity gradient is the adjoint process to extrapolation with PSPI in
the opposite direction. Thus neither process is self-adjoint.

NSPS and PSPI can be combined into a symmetric nonstationary phase shift
(SNPS) extrapolator. This new extrapolator has the symmetry required by reciprocity
which both NSPS and PSPI lack.

SVD based stability analysis shows the SNPS extrapolator to have a much greater
stability range than either NSPS or PSPI. The stability of all three algorithms is
enhanced by giving the velocity a small imaginary part. This results in a natural
attenuation that increases with traveltime and frequency. Stability is shown to be a
complex issue that depends upon velocity gradient, dz step, and frequency.

Numerical experimentation shows visually similar results from all three
extrapolators. Detailed examination shows that NSPS and PSPI are the most dissimilar
while SNPS falls somewhere in between.

We note that other symmetric extrapolators are possible. Another simple one would
use PSPI first and then NSPS. It seems likely that the stability question will also
depend on the vertical velocity gradient and that effect was not considered. Vertical
velocity variations will break the symmetry of the SNPS extrapolator presented here.
However, a symmetric process is still possible by prescribing the velocity function
midway between the initial and final depths. Then, for example, PSPI could pull the
wavefield into the center where NSPS pushes it out with full velocity symmetry.
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Fig. 1. An example of unstable explicit wavefield extrapolation taken from Etgen (1994). a) An
ω-x migration (designed to simulate PSPI) which shows an unstable amplitude growth, b) A
reverse-time migration which produces a stable result, c) the velocity model used for (a) and
(b). The salt layer (white) has an artificial “sediment column” that causes the instability. d) A
profile through the velocity model (along the horizontal line in c) showing the velocity contrast
across the sediment column. e) The singular values for an ω-x extrapolation through the
sediment column. Values greater than unity indicate instability.
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Figure 2. Wavefield extrapolation by nonstationary combination is depicted. The input
wavefield  (a) consists of 3 impulses in three distinct velocity regions. The first computation
step is a complete wavefield extrapolation of the input for each distinct velocity  (b), (c), and
(d). Next, a boxcar window is applied to each extrapolation which zeros all locations where a
particular velocity was not the correct one (e), (f), (g). In the final step, the extrapolated-
windowed wavefields are superimposed (h). Note the wavefield discontinuities produced at
the velocity boundaries.

Figure 3. Wavefield extrapolation by nonstationary convolution is depicted. The computation
reverses the operations of windowing and extrapolation as described nor nonstationary
combination (Figure 3). The first computation step windows the input wavefield into three
distinct regions which isolated each impulse (b), (c), (d). Next, each windowed wavefield is
extrapolated with the appropriate constant velocity(e), (f), (g). In the final step, the
extrapolated-windowed wavefields are superimposed (h). The result is a superposition of
impulse responses.
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Fig. 4. Conceptual descriptions of the explicit extrapolators discussed in the text. In each case
a wavefield is extrapolated from depth 0 to depth z. a) The NSPS extrapolator “pushes out”
the wavefield from the starting datum. The extrapolator is locally similar to stationary phase
shift using the velocity field v(x′,0). b) The PSPI extrapolator “pulls in” the wavefield to the
ending datum. The extrapolator is locally similar to stationary phase shift using the velocity
field v(x,z). c) The SNPS extrapolator uses the NSPS approach to go half-way and then uses
PSPI for the second half-step.
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Fig. 5. The velocity model used in the stability simulations. The upper curve a) is similar to
Etgen’s “sediment column” model (see Figure 1) while the lower line b) represents a
homogeneous medium below the sediment column model. Stars mark the x location of
impulses input into the wavefield extrapolation tests of Figures 14 through 19.
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Fig. 6. The singular values for the three extrapolators discussed in the text for a 30m dz step
at 25 Hz. The spatial sample rate was also 30m. Note that all three show evidence of instability
but the effect is markedly better for SNPS. The velocity field was that of Figure 5 and was
purely real.
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Fig. 7. The singular values for NSPS, PSPI, and SNPS are shown for the same case as in
Figure 6 except that the velocity function was given an imaginary component of 3% of the real
part. The result is a numerical attenuation which drives the algorithms towards stability. Note
that SNPS has become completely stable (i.e. no singular values greater than unity).
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Fig. 8. The singular values for NSPS, PSPI, and SNPS are shown for the same case as in
Figure 7 except that the frequency has been doubled to 50 Hz. Compared with Figure 7, this
result shows greater stability for all three algorithms.
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Fig. 9. The singular values for NSPS, PSPI, and SNPS are shown for the same case as in
Figure 7 except that the frequency has been halved to 12.5 Hz. Compared with Figure 7, this
result shows similar (but slightly less) stability for all three algorithms.
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Fig. 10. The largest singular value is shown for each of NSPS, PSPI, and SNPS for the
velocity model of Figure 5a, a step size of 30m, a frequency of 12.5 Hz, versus a range of
imaginary velocity percentages. PSPI and NSPS show exactly  the same degree of instability
while SNPS stabilizes earlier.
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Fig. 11. The largest singular value is shown for each of NSPS, PSPI, and SNPS for the
velocity model of Figure 5a, a frequency of 25 Hz, and imaginary velocity of 3%, versus a
range of extrapolation step sizes. PSPI and NSPS are unstable until a 70m step is reached
while SNPS is always stable.
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Fig. 12. The largest singular value is shown for each of NSPS, PSPI, and SNPS for the
velocity model of Figure 5a, a step size of 30m, and imaginary velocity of 3%, versus a range
of frequencies. PSPI and NSPS are unstable until 60 Hz while SNPS is almost always stable.
The cause of the oscillations in the SNPS curve is unknown.
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Fig. 13. A repeat of the study of Figure 12 but the step size has been doubled to 60m.
Stability of all algorithms has increased because the numerical attenuation increases with
traveltime. PSPI and NSPS are unstable until 30 Hz while SNPS is always stable. The cause of
the oscillations in the curves is unknown.
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Figure 14. An extrapolation through the velocity model of Figure 5a. Twenty extrapolation
steps of 30m each were taken with NSPS using 3% imaginary velocities. The time domain
result is in a) and the f-k spectrum in b). The input wavefield had eight impulses at positions
shown on Figure 5.
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Figure 15. An extrapolation of the dataset in Figure 14 through the velocity model of Figure
5b. Twenty extrapolation steps of 30m each were taken with NSPS using 3% imaginary
velocities. The time domain result is in a) and the f-k spectrum in b).
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Figure 16. An extrapolation through the velocity model of Figure 5a. Twenty extrapolation
steps of 30m each were taken with PSPI using 3% imaginary velocities. The time domain
result is in a) and the f-k spectrum in b). The input wavefield had eight impulses at positions
shown on Figure 5.
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Figure 17. An extrapolation of the dataset in Figure 16 through the velocity model of Figure
5b. Twenty extrapolation steps of 30m each were taken with PSPI using 3% imaginary
velocities. The time domain result is in a) and the f-k spectrum in b).
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Figure 18. An extrapolation through the velocity model of Figure 5a. Twenty extrapolation
steps of 30m each were taken with SNPS using 3% imaginary velocities. The time domain
result is in a) and the f-k spectrum in b). The input wavefield had eight impulses at positions
shown on Figure 5.
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Figure 19. An extrapolation of the dataset in Figure 18 through the velocity model of Figure
5b. Twenty extrapolation steps of 30m each were taken with SNPS using 3% imaginary
velocities. The time domain result is in a) and the f-k spectrum in b).
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Figure 20. Subtractions of the various wavefield in Figures 14 (NSPS), 16 (PSPI), and 18
(SNPS). a) SNPS - NSPS, b) SNPS - PSPI, c) NSPS - PSPI, d) SNPS - .5(NSPS+PSPI).
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Figure 21. Subtractions of the various wavefield in Figures 15 (NSPS), 17 (PSPI), and 19
(SNPS). a) SNPS - NSPS, b) SNPS - PSPI, c) NSPS - PSPI, d) SNPS - .5(NSPS+PSPI).


