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A nonstationary description of depth migration

Robert J. Ferguson and Gary F. Margrave

ABSTRACT

Application of nonstationary filters in a depth-stepping manner allows an estimate
of the angle-dependent reflectivity for a heterogeneous subsurface. For simplicity, a
2D geometry is adopted and scalar wave propagation is assumed. Migration of a
single source gather proceeds by nonstationary combination filtering, followed by an
offset dependent time shift and spreading correction. Source gather migration
generalizes, for a seismic line, to nonstationary combination filtering of source
gathers, followed by nonstationary convolution filtering of geophone gathers. Zero
offset migration, when derived as a special case of source migration, uses a single
nonstationary extrapolator that is a symmetric of combination and convolution filters.

INTRODUCTION

Many authors present descriptions of how to migrate seismic data by wavefield
extrapolation. Notable among such descriptions are Berkhout (1984), and Wapenaar
and Berkhout (1989), who often use matrix representations of the process of
wavefield extrapolation. It is sometimes desirable to have a description of the
migration process that uses the notation of integral calculus. Algorithms can then be
easily constructed, and the merits of one migration method over another can be more
directly shown. In this paper we provide such a notation to construct migration code
and, because of its simplicity, to unify the many forms of seismic migration. The
presentation is based on the theory of nonstationary filters (Margrave, 1998) and
borrows some concepts (and some notation) from Berkhout (1984).

Here migration is shown to proceed by first filtering a source gather by
nonstationary combination, followed by an offset-dependent time shift and spreading
correction. Source-gather migration, when generalized to an entire seismic line,
prescribes that, for one depth step, source gathers are filtered by nonstationary
combination, and geophone gathers by nonstationary convolution. Zero offset
migration is then derived as a special case of full prestack migration, and stationary
(constant velocity) migration is presented as it’s stationary zero-offset limit.

MODEL OF REFLECTIVITY

Reflectivity can be defined as the ratio between the reflected wavefield ψR and the
incident wavefield ψi evaluated at the same instant in time
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where Ψi and ΨR represent wavefields incident to and reflected from a point (x∆z) in the
subsurface. Times tr

 - and tr

+ indicate immediately before and immediately after
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reflection. Replacing and ΨI and ΨR with their temporal Fourier transforms and
rearranging gives
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and, assuming reflectivity r is independent of ω and tr

 – = tr

+
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Equation (3) implies that the product of r and the spectrum ψi is equal to the spectrum
ψR
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Note that for a monochromatic wavefield the imaging condition is independent of
time, and r is simply the ratio of the incident and reflected wavefields
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In equation (4) ψi and ψR have identical spreading and phase delays, so (5) removes
these effects, and thus estimates reflectivity. The common notion of applying a t = 0
imaging condition is equivalent to averaging the monochromatic reflectivity estimates
over all frequencies.

A general, monochromatic, description for the incident wavefield can assume a
surface (z = 0) distribution of sources (source array) that are superimposed according
to
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where S describes the surface distribution of sources, and the extrapolator W + takes
down-going waves down and up-going waves up. The operator W - will be used to
extrapolate down-going waves up and up-going waves down. (Note that, for constant
velocity phase shift, W + and W - are the complex conjugates of each other.) Also, W +

will be a function of velocity, and we use its first coordinate to describe lateral
velocity dependence. We also have chosen (arbitrarily) to assign velocity dependence
to x and we are therefore using an NSPS extrapolator as defined by Margrave and
Ferguson, (1997). (For more discussion on extrapolators, see Margrave and Ferguson,
1998a.) For one source at xs equation (6) becomes
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where dependence on source coordinate xs has been added to the incident wavefield
ψi. Velocity in the construction of W+ is taken from the source location xs or, in figure
(1), velocity is held constant over the aperture indicated.
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Fig. 1. The incident wavefield ψi for a single source at the surface. Velocity is held constant
over the aperture indicated by the rays and is a function of the source point coordinate.

A monochromatic description of the reflected wavefield ψR is

( ) ( ) ( ) xdxxxWxxxx zzsgszR ∫ −= ∆∆
−

∆ ,,, ψψ
(8)

which describes the reflected wavefield ψR as the downward continuation of geophone
recordings ψg according to the extrapolator W -. Velocity dependence is on the
reflection point coordinate x∆z and, as in figure (2), velocity is held constant over the
aperture indicated. This is again an arbitrary assumption and means that we use the
PSPI algorithm (Gazdag and Squazerro, 1984, Margrave and Ferguson, 1997) in
equation (8).

Fig. 2. The reflected wavefield ψR at a single reflection point. Velocity is held constant over
the aperture indicated by the rays and is a function of reflection point coordinate.

For a single monochromatic source at xs, and using equations (7) and (8), equation
(5) becomes

∆z
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For constant velocity, W + and W – are symmetric under the exchange of x and x∆s and
are the complex conjugates of one another. Furthermore, W+W– = 1 for nonevanescent
energy. These conditions are only approximated by the NSPS and PSPI extrapolators
used here. Wapenaar and Grimbergen (1998) argue that these conditions should be
met, even for lateral inhomogeneity, if source-receiver reciprocity is to be preserved.
Margrave and Ferguson (1998b) show that NSPS and PSPI approximately invert
themselves under a wide range of lateral gradients. In extreme cases only PSPI inverts
NSPS and vice-versa. Margrave and Ferguson (1998a) show that NSPS and PSPI can
be combined into a symmetric form which more closely obeys the conditions above.
Here, we assume that
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so that a symmetric operator results in our zero offset theory. Using equation (10)
equation (9) gives
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If we average all of the monochromatic reflectivity estimates (11) for all of the
sources in a seismic line we integrate over xs
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Equation (12) consists of two filter operations that are known from nonstationary
filter theory (Margrave, 1998). The filter corresponding to integration over x is a
nonstationary combination filter – recognizable by it’s velocity dependence on output
coordinate x∆z. The other filter is a nonstationary convolution filter recognizable by
it’s velocity dependence on input coordinate xs.

SINGLE SOURCE MIGRATION

A very effective way to generate an image of the subsurface is to apply equation
(12) or (11) in a downward stepping algorithm. At each depth level the
monochromatic estimates are averaged into an estimate of reflectivity, thus an image
is constructed. Equation (11) is equivalent to single-source migration, and (12) is
equivalent to migration of many sources.

There are advantages of choosing single-source migration, over multi-source
migration that impact amplitude variation with offset (AVO) and computational
effort. For AVO, the output image of a source migration is an offset dependent
reflectivity that can be grouped with other source migrations for analysis. Multi-
source migration averages AVO. Computationally, a source gather is small  compared
to an entire seismic line and can be migrated on a single computational node
(Ferguson and Margrave, 1998). Distribution of a migration among a large number of
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nodes can result in a tremendous reduction in runtime (Ferguson and Margrave,
1998). Additionally, multi-source migration is a very sort-intensive process; at each
depth level, outputs of all of the source gathers and all of the reflection point gathers
must be available for imaging.

CONSTANT OFFSET MIGRATION

If the acquisition geometry is such that the recorded wavefield ψR is composed of
single sources xs and single receivers x at a common offset c, where x – xs = c, then
equation (12) becomes
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If  the offset c = 0 then the constant offset equation (13) becomes
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Equation (14) represents a zero-offset, or post-stack, migration consisting of two
functions W-. Since these functions can commute within the integral they combine
into a single extrapolator
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in the Fourier domain (15) becomes
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where ξ is a replacement variable for kx – kx’. Analysis of (16) reveals that the Fourier
domain representations α- of operators W - are convolved with each other. Margrave
and Ferguson (1998a) show that equations (15) and (16) prescribe an operator that is
symmetric which, according to Wapenaar and Grimbergen (1998) is required to
satisfy reciprocity. The nonstationary form of operator α is
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For ordinary phase shift, the combined operator in Wsyn

 – reduces to [W –(x∆z – xs)]
2.

A common approximation to [W –(x∆z – xs)]
2 is to invoke the model of exploding

reflectors and replace [W- (kx)]
 2 with a single extrapolator. Propagation then occurs at

½ the velocity
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where vc is equal to ½ the average velocity in the lateral coordinate. Clearly, this
‘exploding reflector’ approximation, though kinematically accurate does not apply the
correct spreading.

CONCLUSIONS

Nonstationary filters can be used in depth migration to provide a mathematical
description that uses integral calculus and is flexible in describing the migration
process. Application of nonstationary filters in a depth stepping manner allows an
estimate of the angle dependent reflectivity to be constructed when source gathers are
migrated. Migration of source gathers is also easy to implement on a distributed
(multi-node) computer and, because each source gather is small compared to the
entire seismic line, each node can be of modest size. Migration of a single source is
formulated using nonstationary combination filtering followed by an offset dependent
time shift and spreading correction. Migration of an entire seismic line uses
nonstationary combination filtering of source gathers, followed by nonstationary
convolution filtering of reflection point gathers. Zero-offset migration uses a single
nonstationary extrapolator that is a symmetric product of combination and
convolution filters.
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