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ABSTRACT
An error and stability analysis is presented for the elementary nonstationary

wavefield extrapolators +
NL , +

PL  and their symmetric hybrids +
AL  and +

PNL . The
analysis is based on analytic expressions that describe the inversion of wavefields
extrapolated by the four operators. Our analysis shows that +

AL  and +
PNL  are more

accurate and more stable than elementary extrapolators +
NL  and +

PL .

The Marmousi synthetic data is used to provide a comparison of depth imaging
using the different extrapolators. The largest mean absolute amplitudes of the
resulting depth images corresponding to +

NL (~1000) and +
PL (~1000) indicate that

recursive application of these extrapolators caused growth in the extrapolated
wavefield. The mean absolute amplitudes of +

AL (~800) and +
PNL (~800) were an order

of magnitude less indicating greater stability. The best image of the model was
returned by the +

AL  method.

INTRODUCTION
Margrave and Ferguson (1999) present a comparison of four wavefield

extrapolators that are useful in recursive explicit depth imaging methods. Two of
them, +

NL  and +
PL  (NSPS and PSPI as introduced by Margrave and Ferguson (1997,

1999)), are derived from the Taylor series representation of extrapolated wavefields
(Margrave and Ferguson (1999)). The remaining extrapolators, +

AL  and +
PNL , are

formed by averaging ( +
AL ) or cascading ( +

PNL ) the elementary ones ( +
NL  and +

PL ).

Margrave and Ferguson (1999) demonstrate that, when velocity varies laterally,
inversion of wavefields extrapolated by +

AL  or +
PNL  more closely return the input than

do +
NL  or +

PL . Through analysis of the asymptotic formulae of the symbols of the
depth derivatives corresponding to +

NL  and +
PL  they suggest that +

AL  and +
PNL  benefit

from the averaging of these symbols. The symbols are complex valued and opposite
in sign in the odd orders.  Their average cancels these terms and returns a symbol that
is real valued with error terms of higher order than the elementary symbols. The +

AL
extrapolator averages the symbols at the Taylor series level through a summing of
depth derivatives (Margrave and Ferguson, 1999). The +

PNL  extrapolator may have
the effect of averaging them through the cascade process (Margrave and Ferguson,
1999).
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Margrave and Ferguson (1999) also demonstrate, by an analysis of the singular
values of the extrapolators, that all four have some values larger than unity in the
nonevanescent region. Thus, when used recursively, e.g., as in depth imaging they are
prone to uncontrolled growth in the amplitude of the extrapolated wavefield, and
extrapolation is unstable. Margrave and Ferguson (1999) find that +

AL  and +
PNL  have

singular values closer to unity than +
NL  and +

PL , with +
AL  being closest, suggesting

that +
AL  and +

PNL  are more stable than the other two, and that +
AL  is the most stable.

In this paper, wavefield extrapolators +
PL , +

NL , +
PNL  and +

AL  are evaluated for
accuracy and stability by deriving the mathematical analogues of the inverse
extrapolations presented by Margrave and Ferguson (1999). The resulting equations
represent propagation from z = 0 to z through a laterally variable medium, followed
by propagation from z back to z = 0. Assuming smooth variation of the extrapolation
symbol α in lateral coordinate x we prove that +

PNL  and +
AL  are invertable and that

inversion of +
PL  and +

NL  results in complex valued error terms.

The Marmousi synthetic data set (Bourgeois et al., 1990) is used to compare the
accuracy and stability of depth imaging methods based on the different extrapolators.

INVERSE OPERATORS, ACCURACY AND STABILITY

Inversion of a wavefield ψ extrapolated by +
PL  has an associated error that results

in an approximation ψP to ψ given by

( ) ( )[ ]( ) ( )[ ]( )xyykymx diLL PPP ⋅ϕ=ψ ∫ +− exp
, (1)

where,

( )[ ]( ) ( ) ( ) ( ) ( ) mmymmyym diLP ∫ ⋅−ϕα
π

=ϕ+ exp,
2
1

2
 , (2)

and the symbol of this pseudo-differential operator is

( ) ( ) 












⋅−




 ω=α kk
x

my
2

exp,
c

iz
. (3)

Depth z is the extrapolation depth interval, ω is temporal frequency and ( )xc  is the
laterally variant velocity of the medium. Coordinates x = {x1, x2} correspond to output
space, y = {y1, y2} correspond to input space, m = {m1, m2} correspond to input
wavenumbers, k = {k1, k2} correspond to output wavenumbers. The spectrum of the
wavefield is ϕ. The sign on z controls the direction of propagation (Margrave and
Ferguson, 1999).
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Equation (1) is the composition of two pseudo-differential operators +
PL  (z

positive) and −
PL  (z negative) that results in an equivalent operator PL  with the form

( ) ( )[ ]( )xmx ϕ=ψ PP L
, (4)

In integral form, equation (4) is

( )[ ]( )
( )

( ) ( ) ( ) mxmmmxxm dicL PP ∫ ⋅−ϕ
π

=ϕ exp,
2

1
2

, (5)

with symbol cP given by

( )
( )

( ) ( ) [ ] [ ]( ) kyyxmkmykxmx ddicP −⋅−−αα
π

= ∫∫ +− exp,,
2

1, 2
. (6)

Because inversion symbol cP equation (6) results from the composition of two
pseudo-differential operators it has an asymptotic formula (Stein, 1993: 237)

( ) ( ) ( ) ( ) ( ) ⋅⋅⋅+α∇∇α∇∇+α∇⋅α∇+= +−+− mx:mxmxmxmx xxmmxm ,,
2

,,1,
2iicP

, (7)

where m∇  and x∇  are gradient operators, and the : operator represents the
contraction of two-second rank tensors. Symbol cP is unity in the first term, and all
other terms represent error, with odd powers being complex valued. For α constant in
x, cP is unity and LP, equation (5), reduces to an inverse Fourier transform. (Inversion
is exact for constant velocity.)

Inversion of +
NL  applied to ψ results in an approximation ϕN to spectrum ϕ given

by

( )
( )

( )[ ]( ) ( ) ( )mkykkxm 







⋅−ψ

π
=ϕ ∫ +− diLL NNN exp

2
1

2
, (8)

where,

( )[ ]( ) ( ) ( ) ( ) xxkxkxkx diLN ∫ ⋅ψα=ψ± exp,,
. (9)

Equation (8) is a composition of two adjoint-standard pseudo-differential
operators +

NL  and −
NL , whose equivalent operator LN has the form

( ) ( )[ ]( )mxm ψ=ϕ NN L
, (10)

or as an integral
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( )[ ]( ) ( ) ( ) ( ) xxmxmxmx dicL NN ∫ ⋅ψ=ψ exp,
, (11)

with symbol cN

( )
( )

( ) ( ) [ ] [ ]( ) kyyxkmkxmymx ddicN −⋅−−αα
π

= ∫∫ +− exp,,
2

1, 2
. (12)

Like cP, inversion symbol cN is the composition of two pseudo-differential
operators, and it too has an asymptotic formula (Appendix A)

( ) ( ) ( ) ( ) ( ) ⋅⋅⋅−α∇∇α∇∇+α∇⋅α∇−= +−+− mx:mxmxmxmx xxmmxm ,,
2

,,1,
2iicN

.

(13)

Symbol cN is similar to cP (equation (7)); the first term is unity and the error terms are
products of derivatives. However, the odd powers of derivatives in differ in sign. This
suggests that an average of cN and cP will cancel complex values and increase the
order of the error of the resulting symbol. In the limit of constant velocity, equation
(11) reduces to a Fourier transform.

In the space domain, the inversion of the average operator +
AL  is

( )[ ]( ) ( )[ ]( )xyxy ψ=ψ +−
AAA LLL

, (14)

where from Margrave and Ferguson (1999)

( )[ ]( ) ( )[ ]( ) ( )[ ]( )xyxyxy ψ+ψ=ψ +++
PNA LLL

2
1

2
1

. (15)

Expansion of equation (14), by replacing +
AL  and −

AL  gives

( )[ ]( ) ( )[ ]( ) ( )[ ]( ) ( )[ ]( ) ( )[ ]( )
4444

xyxyxyxyxy ψ
+

ψ
+

ψ
+

ψ
=ψ

+−+−
PNNPNP

A
LLLLLLL

. (16)

The first two terms of LA consist of the inversion operators LP and LN cast in the
space domain as

( )[ ]( ) ( )
( )

( ) [ ]( )∫ ∫ −⋅−
π

ψ=ψ ykyxkkxyxy ddicL PP exp,
2

1
2

, (17)

and
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( )[ ]( ) ( )
( )

( ) [ ]( )∫ ∫ −⋅−
π

ψ=ψ ykyxkkyyxy ddicL NN exp,
2

1
2

. (18)

LP and LN are transposes in this domain. Substitution of cP equation (7) and cN
equation (1) in equations (17) and (18) gives for LP

( )[ ]( )

( )
( )

( ) ( ) ( ) [ ]( ) ⋅⋅⋅+−⋅−α∇⋅α∇ψ
π

+ψ

=ψ

∫ ∫ 2
2 exp,,

2
1 iddii

LP

ykyxkkxkxxx

xy

xk , (19)

and for LN

( )[ ]( )

( )
( )

( ) ( ) ( ) [ ]( ) ⋅⋅⋅+−⋅−α∇⋅α∇ψ
π

−ψ

=ψ

∫ ∫ 2
2 exp,,

2
1 iddii

LN

ykyxkkykyyx

xy

yk . (20)

Operators LP, and LN differ only in the sign of the odd orders of their derivatives
(the odd orders are also complex). Their sum cancels these terms and increases the
order of the error terms giving for the first two terms in equation (16)

( )[ ]( ) ( )[ ]( ) ( )

( )
( ) ( ) ( ) [ ]( ) ⋅⋅⋅+−⋅−α∇∇α∇∇ψ

π
+

ψ=
ψ

+ψ

∫ ∫ ykyxky:yy

xxyxy

yykk ddii

LL NP

exp
2

1
2
1

244

2
2 . (21)

The third term in equation (16) corresponds to forward extrapolation by +
NL

followed by reverse extrapolation by −
PL

( )[ ]( ) ( )
( )

( ) ( ) [ ]( ) ykyxkkykxyxy ddiLL NP −⋅−αα
π

ψ=ψ ∫∫ +−+− exp,,
2

1
2

. (22)

Substituting yxu −=  in equation (22) gives

( )[ ]( ) ( )
( )

( ) ( ) ( ) ukukkuxkxuxxy ddiLL NP ⋅−−αα
π

−ψ=ψ ∫∫ +−+− exp,,
2

1
2

. (23)

Wavefield ψ can be approximated by Taylor series

( ) ( ) ( ) ( ) ( ) ⋅⋅⋅−ψ∇⋅−+ψ∇⋅−ψ=−ψ xuxuxux xx
2

. (24)

Similarly, symbol α+

( ) ( ) ( ) ( ) ( ) ⋅⋅⋅−α∇⋅−+α∇⋅−α=−α ++++ kxukxukxkux xx ,,,, 2

. (25)

Replacing ψ and α+ in equation (23) with equations (24) and (25) gives
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( )[ ]( )

[ ] ( ){ }
( )

( ) [ ] ( ){ } ( )∫∫ ⋅−α⋅⋅⋅+∇⋅−α
π

ψ⋅⋅⋅+∇⋅−

=ψ

+−

+−

ukukkxu kxxu 

xy

xx dd

LL NP

exp,1,
2

11 2 .

(26)

The first order terms in equation (26) are, beginning with the simplest

( ) ( ) ( ) ( ) ( )

( )x

ukukkxkxx

ψ=

⋅−αα
π

ψ ∫ ∫ +− ddexp,,
2
1

2

,

(27)

next,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

exp
2
1

exp,,
2
1

2

2

=

⋅−
π

⋅ψ∇=

⋅−αα
π

⋅ψ∇

∫ ∫

∫∫ +−

kuukux

ukukkxkxux

x

x

dd

dd

. (28)

and,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ){ }

0
,,,,

,,

exp
2
1,,

0

2

=
α∇∇α+α∇α∇ψ=

δα∇αψ=

⋅−
π

⋅α∇αψ

=
+−+−

+−

+−

∫

∫ ∫

kkxxk

x

x

kxkxkxkxx

kkkxkxx

kuukukxkxx

d

dd

, (29)

where for this last term,

( ) ( ) ( ) ( )[ ]
0

,,,, 00

=
∇α±=α∇ =

±
=

±
kkkk kxkxkxkx zz kkz

, (30)

and

( ) ( )

0

2
1,

0

2
1

2

0

=




























⋅+




 ω=∇

=

−

=

k

kk kkk
x

kx
c

kz

. (31)

Assuming that second order terms (and higher) are small, equation (26) reduces to
the identity



An error and stability analysis

CREWES Research Report — Volume 11 (1999)

( )[ ]( ) ( )xxy ψ≈ψ+−
NP LL

, (32)

from which we infer, to first order, −
PL and +

NL  are approximate inverses and,
therefore, the fourth term in equation (16) is

( )[ ]( ) ( )xxy ψ≈ψ+−
PN LL

. (33)

The inversion operator AL , equation (16), is now written to first order as

( )[ ]( ) ( )xxy ψ≈ψAL
. (34)

The results from the previous discussion are sufficient to derive the inversion of
+
PNL

( )[ ]( ) ( ) ( )xyxy 







ψ=ψ

−−
2
1

2
1

2
1

2
1

NPNPPN LLLLL
, (35)

and, using the associative properties of these operators, to first order −
PL  and +

NL  are
inverses, therefore

( )[ ]( ) ( )xxy ψ≈ψPNL
. (36)

For comparison, PL  (equation (19)) to first order, is

( )[ ]( )

( )
( )

( ) ( ) ( ) [ ]( )∫ ∫ −⋅−α∇⋅α∇ψ
π

+ψ

≈ψ

ykyxkkxkxxx

xy

xk ddii

LP

exp,,
2

1
2 , (37)

and for NL

( )[ ]( )

( )
( )

( ) ( ) ( ) [ ]( )∫ ∫ −⋅−α∇⋅α∇ψ
π

−ψ

≈ψ

ykyxkkykyyx

xy

yk ddii

LN

exp,,
2

1
2 . (38)

Inverses PNL  (equation (36)) and AL  (equation (34)) have no first order error
terms. Inverse operators PL  (equation (37)) and NL  (equation (38)) have first order
error terms that are functions of spatial and wavenumber derivatives that are non zero
for smooth variation in velocity. Thus, in this situation, extrapolators +

PNL  and +
AL  are

more accurate than +
PL  and +

NL .

In terms of stability, again to first order, PL  and NL  have complex error terms,
suggesting that +

PL  and +
NL  also generate complex values. Uncontrolled complex
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values during recursive application of these extrapolators may lead to the instability
observed by Margrave and Ferguson (1999).

MARMOUSI
The Marmousi synthetic data (Bourgeois et al., 1990) were acquired for use in

comparing depth imaging methods based on extrapolators +
NL , +

PL , +
AL  and +

PNL . The
prestack data were depth imaged at a depth interval of 20m. This interval was chosen
as being large enough to illustrate the different stability and accuracy characteristics
of the extrapolators without becoming unstable enough to preclude comparison. For a
detailed description of prestack depth imaging using nonstationary extrapolators see
Ferguson and Margrave (1999).

Figure 1 shows the true reflectivity computed from the density and velocity profile
of the model. Figures 2 through 5 show the depth images corresponding to +

NL
(Figure 2), +

PL (Figure 3), +
AL (Figure 4) and +

PNL (Figure 5). The depth-imaging
algorithm based on +

AL  gives the best image, especially in the shallower part of the
model. (Arrows annotated on the figures facilitate this comparison.) The steeply
dipping faults are more clearly imaged using +

AL , and a large part of the section is less
obscured by noise.

Comparison of the average amplitudes of the images of Figure 2 through 5 show
that +

AL  and +
PNL  are more stable than +

NL  and +
PL . The average absolute amplitudes

corresponding to +
AL  (~800) and +

PNL  (~800) are 20% less than those corresponding
to +

NL (~1000) and +
PL (~1000).

CONCULSIONS
An error and stability analysis was presented for the nonstationary wavefield

extrapolators +
NL , +

PL , +
AL  and +

PNL  defined by Margrave and Ferguson (1999) based
on analytic expressions that describe inversion of wavefields extrapolated by the four
operators. The analysis supports the conclusions of Margrave and Ferguson (1999)
that +

AL  and +
PNL  are more accurate and more stable than elementary extrapolators +

NL
and +

PL . The first order result (i.e., smooth variation of the extrapolation symbol α in
lateral coordinate x) proved the error related to the inversion of +

PNL  and +
AL  is less

than the inversion of +
PL  and +

NL . Similarly, the greater stability of +
PNL  and +

AL  was
indicated.

The Marmousi model data (Bourgeois et al., 1990) were used to provide a
qualitative comparison of depth imaging methods based on the different
extrapolators. The best image of the model was returned by the +

AL  method.
Comparison of the average amplitudes of the images showed that the depth images
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for all four extrapolators had grown in amplitude but that +
PNL  and +

AL  had grown
20% less than +

PL  and +
NL .
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APPENDIX A
Computing the spatial Fourier transform in cN equation (12) gives

( )
( )

( ) ( ) [ ]( ) kxkmkxmkmmx diAcN ∫ ⋅−−α−
π

= +− exp,,
2

1, 2
. (A1)

Equation (A1) can also be written

( )
( )

( ) ( ) ( ) uxuumxmumx diAcN ∫ ⋅−−α
π

= +− exp,,
2

1, 2
. (A2)

Expanding +α  results in

( )
( )

( ) ( ) ( )[ ] ( ) uxumxumxmumx m diAcN ∫ ⋅−⋅⋅⋅+α∇⋅−α
π

= ++− exp,,,
2

1, 2
, (A3)

that provides an asymptotic formula for cN that is similar to that of cP by recognizing
that coordinates u arise as spatial derivatives of the Fourier kernal thus

( ) ( ) ( ) ( ) ( ) ⋅⋅⋅−α∇α∇+α∇α∇−= +−+− mx:mxmxmxmx xmxm ,,
2

,,1, 22
2iicN

. (A4)
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Fig. 1. The seismic reflectivity of Marmousi computed from the density and velocity profile of
the model. The arrows and ring correspond to points of comparison with Figures 2 through 5.

Fig. 2. Depth image of the Marmousi data set corresponding to +
NL . The depth interval was

20m. The mean absolute amplitude of this image is ~1000. The arrows indicate points of
comparison on two faults in the model. The ring encloses a flatter region that seems to suffer
from noise. In this image the noise corresponds to a trough followed by a peak.
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Fig. 3. Depth image of the Marmousi data set corresponding to +
PL . The depth interval was

20m. The mean absolute amplitude of this image is ~1000. The images of the indicated

faults are less well rendered by +
PL compared to +

AL (Figure 3). The noise in the ringed area
is a strong peak.

Fig. 4. Depth image of the Marmousi data set corresponding to +
AL . The depth interval was

20m. The mean absolute amplitude of this image is ~800. The best focussing of the indicated
faults is provided by this image. The noise in the ringed area is a strong trough.
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Fig. 5. Depth image of the Marmousi data set corresponding to +
PNL . The depth interval was

20m. The mean absolute amplitude of this image is ~800. This image has the lowest noise in
the ringed area.


