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ABSTRACT
A new depth imaging method is presented that is based on nonstationary filter

theory. It is suitable for imaging media whose velocity structure varies in all spatial
coordinates. The well-known phase-shift-plus-interpolation method and the recently
introduced nonstationary phase-shift method, both implemented as nonstationary
filters, are combined into a single symmetric operator. The symmetric operator is
used to compute incident and reflected wavefields at different depths using,
respectively, a source waveform and geophone recordings. The ratio of the resulting
incident and reflected wavefields is used to estimate seismic reflectivity. Reflectivity
is then immediately useful in providing a kinematic image of the subsurface. A
practical implementation of the symmetric operator is possible when the required
velocity model is made piecewise constant laterally. Depth imaging then proceeds by
a sequence of phase shifts, spatial windows and integrations over temporal frequency.
Migration of the Marmousi synthetic data set by this method provides a very good
image.

INTRODUCTION
The phase-shift method (Gazdag, 1978) predicts the amplitudes and phases of

wavefields at depth based on known wavefields at shallower depths and a model of
the subsurface velocities. The known wavefields are usually modeled seismic source
wavefields and geophone recordings, and the velocity model is usually inferred from
geologic mapping, sonic logs and seismic semblance analysis. Phase-shifted
wavefields are used to compute seismic reflectivity in the subsurface that can be used
to estimate the acoustic velocity of rocks (assuming an analytic relationship between
density and velocity) at a scale much finer than the original velocity model. Phase-
shifting wavefields is a perfectly stable process and gives exact results for phase
angles up to 90 degrees if the acoustic velocity of the medium is everywhere constant
(Gazdag, 1978; Stoffa et al., 1990). Historically, velocity variation in depth has been
accommodated by recursively phase-shifting wavefields through small depth intervals
of constant velocity (Gazdag, 1978). The process occurs entirely in the Fourier
domain with the usual advantages in speed and accuracy (Whitmore et al., 1988). An
additional advantage of phase shift is that reflections, multiple reflections, head
waves and mode conversions are not generated by velocity-model gradients to
confuse the resulting images (Holberg, 1988). (This last point assumes the inferred
velocity model is a smooth approximation of the true velocity, thus all propagating
modes are effectively decoupled.)

Approximate phase shifts for laterally variable velocity can be done using the
split-step-Fourier (Stoffa et al., 1990), and phase-screen (Wu, 1994) methods, that
split the process into a focussing step and a vertical time delay. The delay is



Ferguson and Margrave

CREWES Research Report — Volume 11 (1999)

computed in the space-temporal frequency domain and accommodates lateral velocity
variations. Focussing occurs in the Fourier domain and assumes velocity is either
constant (Stoffa et al., 1990), or approximately accommodates lateral velocity
variations (Wu, 1994). Another method, phase-shift-plus-interpolation (PSPI; Gazdag
and Sguazzero, 1984), extends phase-shift to laterally variable velocity by computing
a number of constant-velocity phase shifts, for a set of reference velocities, and
interpolating to obtain a single laterally variable result (Gazdag and Sguazzero,
1984).

Black et al. (1984) give an analytic expression for a Fourier method that
accommodates lateral velocity variation but provide little insight into its nature.
Margrave and Ferguson (1997, 1999a) show that the method of Black et al. (1984) is
a generalization of PSPI to an exhaustive set of reference velocities that avoids all
interpolation. Margrave and Ferguson (1997, 1999a) also use nonstationary filter
theory (Margrave, 1998) to derive the adjoint form to PSPI called nonstationary phase
shift (NSPS).

In this paper, we show how NSPS and PSPI can be combined into a single
operator that has the virtue of being symmetric in the domain of space and temporal
frequency. We then detail the structure of a practical prestack depth migration of
source records. To gain computational efficiency, we approximate the actual velocity
variation within a given depth step by a piecewise constant function. As an example,
the Marmousi model of the Institute Francais du Petrole (IFP) (Bourgeois et al., 1991)
is used. The model consists of 240 source gathers, the source impulse, velocity and
density for the entire model. IFP used finite differences to generate the seismic data
so elastic wave motion is approximated and some dispersion is present (Bourgeois et
al., 1991).

REVIEW OF CONSTANT VELOCITY PHASE SHIFT
A review of constant-velocity phase shift (Gazdag, 1978) is helpful in

understanding its nonstationary (variable-velocity) extension. The phase-shift method
is most useful in situations where only macro contrasts in the required velocity model
are known in depth so, reflections, multiple reflections, head waves and mode
conversions cannot be modeled, and the elastic wave equation is unnecessary.
Propagation is assumed governed by the scalar wave equation, and Fourier transforms
are used to decompose seismic wavefields into planewaves that are phase shifted
from the surface to new depths. The results are then inverse Fourier transformed into
new wavefields that are used to estimate reflectivity. In the classical derivation,
velocity must remain constant in all coordinates. However, if the subsurface is
divided into depth intervals of differing velocities, then wavefields can be phase
shifted one depth interval at a time and reflectivity estimated at each depth. The
output of one phase shift becomes the input to the next and so on. Continuous
velocity variation in depth is then accommodated in the limit of infinitesimally small
depth intervals.
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Assuming a monochromatic wavefield ψ of frequency ω and spatial coordinates x0
= (x,y,z) where

( ) ( ) ( )tit ω±ωψ=ψ exp,, 00 xx
, (1)

a scalar wave equation for heterogeneous media is,

( ) ( ) ( )ωψ




 ω−=ωψ∇ ,,
2

2
0

0
0 x

x
x

c . (2)

The wavefield ψ can be represented by an inverse Fourier transform of its spectrum ϕ

( )
( )

( ) ( ) 00000 kkxkx di∫ ⋅−ωϕ
π

=ωψ exp,
2
1, 3 (3)

where coordinates k0 = (kx,ky,kz) are the Fourier duals (wavenumbers) of x0. Replace
ψ in equation (2) with equation (3) and compute the partial derivatives

[ ] ( ) ( ) ( ) ( ) ( )∫∫ ⋅−ωϕ




 ω=⋅−ωϕ⋅ 0000
0

000000 kkxk
x

kkxkkk di
c

di exp,exp,
2

. (4)

Then, Fourier transform equation (4)
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where the order of integration has been reversed. Variation of c with x0 complicates
evaluation of the right hand side of equation (5). However, a general result is obtained
if we constrain c to be constant. Thus, for a homogeneous medium c (x0) = c,
equation (5) reduces to
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0000 kkkkkkk d

c ∫ −δωϕ




 ω=ωϕ⋅ ,,

2

(6)
or,

[ ]
2


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 ω=⋅

c00 kk
. (7)

Equation (7) is known as the dispersion relation for scalar waves, that allows kz to be
computed from quantities which can be measured at z = 0; that is kx, ky and ω,
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where k = {kx,ky}. Spectrum ϕ in equation (3) can be modified to force the kz
dependence of equation (8)
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where ϕ1 and ϕ2 are arbitrary functions of (k,ω) to be determined from boundary
conditions. The kz dependence is contained entirely by delta functions, whose action
in equation (3) is to replace kz everywhere and collapse the kz integral thus,

( )
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is the phase-shift extrapolator. We adopt the convention that z increases downward.
Equation (10) defines ψ for all z and separates it into up travelling (ϕ1) and down
travelling (ϕ2) components as can be seen in the sign dependence on z. In the absence
of vertical-velocity gradients, but for arbitrary lateral gradients, ϕ1 and ϕ2 propagate
independently of each other (Fishman and McCoy, 1985). Evaluation of equation (10)
at z = 0 gives ϕ1 + ϕ2 as the spectrum of ψ recorded at the surface z = 0

( )
( )

( ) ( )[ ] ( ) kkxkkx di∫ ⋅−ϕ+ϕ
π

=ψ exp
2

10, 212 (12)

(the dependence on ω has been suppressed). The complete determination of both ϕ1
and ϕ2 requires the first derivative of ψ with respect to depth evaluated at z = 0 as a
second boundary condition. Since the derivative is generally not available, we make
the common assumption that only waves travelling upwards are recorded. Then, only
ϕ1 = ϕ is nonzero and equation (10) reduces to

( )
( )

( ) ( ) ( ) kkxkkx diz,z ∫ ⋅−αϕ
π

=ψ exp,0
2

1,
2 . (13)

Equation (13) allows ψ(z = 0) to be phase shifted to any depth z.
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NONSTATIONARY PHASE SHIFT
Wavefields phase shifted in constant velocity media are exact solutions to the

scalar wave equation. For laterally variable velocity, three alternative approximations
are developed here using nonstationary filter concepts (Margrave, 1998). One is
proposed by Margrave and Ferguson (1999a) and is referred to as nonstationary phase
shift (NSPS). Margrave and Ferguson (1999a) recognize the other as the phase-shift-
plus-interpolation method (PSPI; Gazdag and Sguazzero, 1984) applied in the limit of
continuous velocity variation. (The continuous form of PSPI contains no
interpolation.) A third method that we derive here combines NSPS and PSPI into a
single operator that has the desirable property of being symmetric in the (x,ω)
domain. NSPS and PSPI also correspond to, respectively, the standard and adjoint
standard forms of pseudo-differential operators whose symbols are the nonstationary
phase-shift extrapolator α.

A direct way to accommodate laterally variable velocity in equation (13) is to
simply allow α to have x dependence through c(x). That is,

( )
( )

( ) ( ) ( ) kkxkxkx di,z,,z ∫ ⋅−αϕ
π

=ψ exp0
2

1,
2 (14)

where the nonstationary extrapolator is

( ) ( ) 
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
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x
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2

exp,
c

iz,z,
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In this expression x corresponds to output coordinates, at z, so velocity varies with
output location. Equation (14) applies a nonstationary phase shift carrying the
spectrum ϕ(z = 0) to a new depth simultaneous with transformation to space
coordinates. Fishman and McCoy (1985) suggest the same simple extension to
constant-velocity phase-shift for large ω, but do not recognize PSPI in the limit of
continuously variable velocity (see Margrave and Ferguson, 1999a, for a
justification).

Equation (14) can be written to explicitly contain the input wavefield by replacing
ϕ(z = 0) with the Fourier transform of ψ(z = 0)

( ) ( ) ( ) yyxyx dzA,z ∫ψ=ψ ,,0,
, (16)

where,

( )
( )

( ) [ ]( ) kkxykxyx di,z,zA ∫ ⋅−α
π

= exp
2

1,, 2 , (17)

and y corresponds to the lateral coordinates (input coordinates) at z = 0. Equation (14)
is a standard-form pseudo differential operator where α(x,y,z) is the symbol of the
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operator. Equation (16) presents the same operator as a singular integral (Stein, 1993:
230 – 233).

An alternative variable-velocity phase shift follows by returning to the constant
velocity case (equation (13)) and Fourier transforming

( ) ( ) ( ),zz kkk αϕ=ϕ 0,,
. (18)

Next, replace ϕ(z = 0) with the Fourier transform of ψ(z = 0)

( ) ( ) ( ) ( ),zdi,z kykyyk α⋅ψ=ϕ ∫ exp0,
. (19)

Since velocity is independent of position, α can be moved inside the Fourier integral

( ) ( ) ( ) ( ) ykykyk di,z,z ∫ ⋅αψ=ϕ exp0,
. (20)

Velocity is now allowed to vary with input coordinate y

( ) ( ) ( ) ( ) ykyk,yyk diz,,z ∫ ⋅αψ=ϕ exp0,
. (21)

Equation (21) is a nonstationary phase shift carrying wavefield ψ(z = 0) to a new
depth simultaneous with a transformation to wavenumbers. Margrave and Ferguson
(1997, 1999a) describe this form for seismic imaging calling it nonstationary phase
shift (NSPS). Next, inverse Fourier transform equation (21)

( ) ( ) ( ) yyxyx dzB,z ,,0, ∫ψ=ψ
, (22)

where,

( )
( )

( ) [ ]( )∫ ⋅−α
π

= kkxykyyx di,z,zB exp
2

1,, 2 . (23)

We recognize equation (22) as the adjoint of a pseudo differential operator whose
symbol is α*. To demonstrate we simply show that the adjoint of B(x,y,z) is A(x,y,-z).
That is
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2
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1

2

2

, (24)

where superscript † represents the adjoint (Hermitian conjugate). (Velocity variation
at x and y must be the same for equation (24) to hold.) Thus, the adjoint of the NSPS
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operator B is the PSPI operator A with the depth value z changed in sign. Similarly,
the adjoint of PSPI is NSPS propagating in the opposite direction.

A NEW SYMMETRIC NONSTATIONARY PHASE SHIFT
The complimentary relationship between NSPS and PSPI suggests that it is natural

to combine them into a third, variable-velocity phase shift that may perform better
than PSPI or NSPS alone. Etgen (1994) demonstrates that operators like PSPI can
become unstable in the presence of instantaneous velocity contrasts of thousands of
meters-per-second. Margrave and Ferguson (1999b), expanding on the work of Etgen
(1994), demonstrate that the NSPS operator also suffers from instability, but that a
hybrid of the two, dubbed symmetric nonstationary phase shift (SNPS), has greater
stability. We will show that the SNPS operator has the spatial symmetry required by
reciprocity (Wapenaar and Grimbergen, 1998).

The symmetric operator (i.e., its kernel equals its transpose) results by phase
shifting from 0 to z/2 by NSPS and from z/2 to z by PSPI or vice versa. (Note: PSPI
followed by NSPS is symmetric but does not result in an identical extrapolator.) For
example, using equation (21), phase shift ψ(z = 0) from 0 to z/2 by NSPS

( ) ( ) ( ) ( ) ykyk,yyk diz,,z ∫ ⋅αψ=ϕ exp2/02/,
. (25)

Next, using equation (14), phase shift from z/2 to z by PSPI

( )
( )

( ) ( ) ( ) kkxkxkx di,z,,zz ∫ ⋅−αϕ
π

=ψ exp2/2/
2

1, 2 . (26)

Replace ϕ in equation (26) by equation (25) and switch the order of integration to
give

( ) ( ) ( )∫ ψ=ψ yyxyx d,z,C,z 0,
, (27)

where C, the kernal of the SNPS operator, is defined as

( )
( )

( ) ( ) [ ]( ) kyxkkxkyyx di,z,,z,zC ∫ −⋅−αα
π

= exp2/2/
2

1,, 2 . (28)

Equation (27) is an (x,ω) form of a nonstationary phase shift that combines NSPS and
PSPI in a single, symmetric operator C (equation (27)).  The symmetry of C is
evident by its invariance under the exchange of coordinates y and x. The SNPS
extrapolator is an explicit extrapolator suitable for 2D or 3D depth migration in
complex media. Wapenaar and Grimbergen (1998) use reciprocity concepts to argue
that such extrapolators should be symmetric in the (x,ω) domain. We note that
ordinary phase shift has such symmetry and has the property that the adjoint
operation simply reverses the extrapolation. SNPS has these same properties.
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SYMMETRIC NONSTATIONARY PHASE SHIFT OF SOURCES AND
RECEIVERS FOR DEPTH IMAGING

At a particular depth the ratio of the source (incident) seismic wavefield ψS, and
the reflected seismic wavefield ψR, defines seismic reflectivity r that can be related to
rock properties (e.g. P-wave velocity, S-wave velocity, density), and group angle. By
recursively phase shifting the reference wavefields, ψS(z = 0) and ψR(z = 0), to depths
z = (0, z1, z2, … , zn) r is estimated for all coordinates relevant to the recording
aperture. By recursion, we mean a process like the following: 1) ψS(z = 0) and ψR(z =
0) are phase-shifted to ψS(z1) and ψR(z1) respectively, and r(z1) is computed; 2) ψS(z1)
and ψR(z1) are phase-shifted to ψS(z2) and ψR(z2) respectively, r(z2) is computed; and
3) the process continues until r for the final depth level zn is computed.

For any depth, ψR and ψS are not directly measurable but can be deduced from a
surface recording ψR(z = 0), and a model of the source ψS(z = 0). For example, phase
shifting ψR(z = 0) to a new depth z is achieved with SNPS  (equation (27))

( ) ( ) ( ) ( ) ωωωωψ=ψ ∫ ∫ dtid,z,C,,t,z RR exp,0, yyxyx
, (29)

where ω is here explicitly stated. Phase shifting ψS (z = 0) is similarly described by,

 
( ) ( ) ( ) ( ) ωωωωψ=ψ ∫ ∫ dtidz,,C,,t,z SS exp,0, y-yxyx

. (30)

The sign reversal on z in C is required to extrapolate downward-travelling waves
down while equation (29) moves upward-travelling waves down. Amplitudes
characteristic of geometric spreading are contained in ψR and ψS, and amplitude
variations characteristic of material contrasts are only found in ψR. Their ratio defines
reflectivity r at depth z

( ) ( )( )
( )( )ztz
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zr

S

R
,,,
,,,

,
xx
xx

x
τ=ψ
τ=ψ

=
(31)

where time τ  is the instant ψS is converted into ψR (Temme, 1984). The required
amplitudes of ψR and ψS at t = τ must be picked (Temme, 1984; Berryhill, 1979,
1984).

An implementation of equation (31) that avoids picking reflections is to replace ψR
and ψS with their inverse Fourier transforms

( )
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x
, (32)

then for r independent of ω



Symmetric nonstationary phase shift

CREWES Research Report — Volume 11 (1999)

( ) ( ) ( )[ ] ( )( ) 0,exp,, =ωωτωψ−ωψ∫
∞

∞−

dzi,z,zr,z SR xxxx
. (33)

Equation (33) is satisfied if
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Equation (34) corresponds to a single temporal frequency or monochromatic estimate
of reflectivity. Averaging r over the range of available ω gives
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where * is complex conjugation. Equation (35) is suitable for estimating r in variable
velocity media using a recursion in depth. Overlapping each source-receiver
geometry and summing provides an image of the subsurface.

PRACTICAL IMPLEMENTATION
If lateral velocity variation is smooth, depth imaging algorithms based on NSPS,

PSPI and SNPS can be optimized to reduce run time by limiting the wavenumber
bandwidth of the operators (Margrave and Ferguson, 1999a). Alternatively, if lateral
variation in velocity is blocky, then a piecewise constant approximation for the three
methods can be obtained using windowing operations and multiple constant-velocity
phase shifts (Margrave and Ferguson, 1999a). We use the latter approach here.
Though we present a 2D implementation, the method extends easily to 3D.

For each unique velocity vj along coordinate x, a window Ωj is constructed such
that it takes on a value of 1 at every x location where c(x) takes on the value vj and is
zero otherwise. After some analysis (Margrave and Ferguson, 1999a), equation (14)
(PSPI) becomes

( ) ( ) ( ) ( )∫∑
∞

∞−

−ωϕωαΩ
π

=ωΨ dxxikkzkzx xxxj
j

j exp,0,,,
2
1,,

(36)

and equation (21) (NSPS) is
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Unlike equations (14) and (21), the integrations in equations (36) and (37) are all
Fourier transforms. Equation (36) constructs the PSPI space-domain wavefield by
using ordinary phase-shift to extrapolate the input spectrum for each of the {vj}. Then
the windows {Ωj} are applied to these extrapolations and the resulting wavefields are
superimposed. In contrast, equation (37) constructs the NSPS Fourier-domain
wavefield by applying the window set {Ωj} to the input wavefield, phase shifting
each result with the appropriate vj, and summing over all j. The essential difference is
that windowing is the last step in PSPI and the first step in NSPS. The cost of NSPS
or PSPI is proportional to the number of distinct velocities times the cost of ordinary
phase shift.

Similarly, the SNPS operator has a piecewise-constant approximation that is the
cascade of the NSPS and PSPI processes. Figures 1a, b, and Figure 2 present a set of
flow charts that illustrate the implementation of, respectively, NSPS, PSPI and SNPS.
These expressions accomplish nonstationary phase shift by the fast and relatively
simple operations of constant-velocity phase shift and windowing.

MARMOUSI
We use the Marmousi model of the Institute Francais du Petrole (IFP) (Bourgeois

et al., 1991) to demonstrate prestack imaging by nonstationary phase shift. The 2D
model consists of 240 source gathers (pressure recordings), a known source impulse,
plus complete velocity and density profiles. IFP used finite differences to generate the
seismic data so elastic wave motion is approximated and some dispersion is present
(Bourgeois et al., 1991). The underlying geological model represents a profile
through the North Quenguela trough in the Cuanza basin of Angola.

We did not preprocess the Marmousi data so the embedded source wavelet and
multiples are present. No attempt was made to deal with multiples, but the source
waveform was used to construct the reference source wavefield during imaging. The
velocity model was resampled from a four-meter sample spacing in x and z to 25
meters in x, the depth interval remains at four meters. A piecewise constant
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approximation to the velocity model was made by rounding each velocity to the
nearest 100 m/s, resulting in approximately 10 to 20 unique velocities laterally in
each depth step. No attempt was made to determine the optimal set of constant
velocities.

Depth migration one source gather proceeds as follows:

1) Specify the reflected wavefield as the recorded source gather, and pad it from
96 to 256 traces using zero amplitude traces (e.g., an example is given in Figure 3).

2) Specify the incident wavefield as the source waveform provided. Place the
source waveform in a position corresponding to the source location within a gather of
256 zero amplitude traces.

3) Depth image with SNPS using the piecewise constant velocity model. Restrict
temporal frequencies to between 5 and 48 Hz.

Due to the limited recording aperture of a single source gather and the complexity
of the model, a coherent image of the entire model is not possible from a single
source. Figure 3 shows a source gather from location 5725m in the model. The
resulting imaged gather is shown in Figure 4. Coherent reflections are only apparent
in a narrow region corresponding to specular reflections, energy outside this region is
noise. A complete image of the entire model is possible by migrating all of the source
records, sorting the traces into common depth points (CDPs), muting noise and
stacking. Figure 5 shows one CDP from location 6500 m in the model. Reflection
energy on a CDP gather forms a continuous zone of coherency, as indicated by the
annotated lines, data outside of this region is rejected. The resulting stacked traces
(Figure 6) give reflectivity in depth but, due to stacking, they represent an average
reflectivity over the range of source-receiver offsets in each CDP. For comparison, a
bandlimited, zero-offset reflectivity section was computed from the p-wave velocities
and densities (Figure 7).

All of the major seismic markers are present in the migrated image including three
normal growth faults and the target sands. The top and bottom of the sands are
resolved but the internal bedding is possibly beyond the resolution of the data.
Elsewhere many of the steeply dipping folds have been imaged.

CONCLUSIONS
A commonly used phase-shift method that approximates wave motion through

media with lateral variation in velocity (PSPI) is a nonstationary filter in the limit of
continuous lateral velocity variation. An alternative to PSPI, nonstationary phase shift
(NSPS), exists by similar intuition and nonstationary filter theory. PSPI and NSPS
were shown to be, respectively, the standard and adjoint standard forms of pseudo
differential operators, whose symbols are the nonstationary phase-shift extrapolator.

The PSPI and NSPS phase-shift extrapolators can be coupled to obtain a
composite extrapolator, called SNPS, which is symmetric in the (x,ω) domain.
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Symmetry is a desirable property (from reciprocity considerations) and is more stable.
Prestack depth migration of common-source gathers was implemented using the
SNPS extrapolator. Reflectivity estimates for each depth were formulated as the ratio
of downward extrapolated receiver and source wavefields. This ratio was done
independently for each temporal frequency and averaged over all frequencies. A
practical implementation of the NSPS, PSPI and SNPS extrapolators can be done
under the assumption that velocity is piecewise constant. In this case, the
extrapolations are all constructed from the basic operators of constant velocity phase
shift for each relevant velocity and appropriate spatial windowing. This
implementation extends easily to 3D.

The Marmousi synthetic data set was used to demonstrate the viability of these
results. Using a piecewise constant approximation to the exact Marmousi velocities, a
very high resolution image was obtained.
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Fig. 1. Flow charts of wavefield extrapolation by NSPS (a) and PSPI (b). The windows Ωj and
phase shifts αj correspond to piecewise constant velocities vj. NSPS applies Ωj to wavefield
Ψo prior to Fourier transforming (FT) and phase shifting. The resulting spectra are summed to
form the output spectrum ϕz. PSPI applies Ωj to ϕo after phase shifting and inverse Fourier
transforming (IFT). The resulting wavefields are summed to form the output wavefield Ψz.
Both processes change spacial domain simultanious with phase shifting, NSPS goes from x
to kx, while PSPI goes from kx to x.
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Fig. 2. Flow chart of wavefield extrapolation by SNPS. Windows Ωj and phase shifts αj

correspond to piecewise constant velocities vj. Phase shift of wavefield Ψo to Ψz proceeds
with a z/2 step by NSPS (see description in Figure 1 left) followed by a z/2 step by PSPI (see
description in Figure 1 right). SNPS can just as easily be formulated beginning with PSPI
and ending with NSPS at the cost of two extra IFTs over kx.
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Fig. 3. A gather of common-source traces (source gather). The position of the source is at
5475 meters within the model.

Fig. 4. Migrated image of the source gather of Figure 3. Coherent reflectivity corresponds to a
narrow range of specular reflections due to the limited recording aperture (Figure 3). It is
desirable to construct a complete image using a large number of overlapping images (Figure
6).
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Fig. 5. A common-depth-point (CDP) gather corresponding to location 6500 m in Figure 6.
Amplitudes between the mute lines (annotated) are summed to give a single trace.

Fig. 6. Depth image from nonstationary migration. (The CDP gather in Figure 5 is muted, and
summed to give the trace at distance 6500 m.) Each amplitude represents a mixed reflectivity
due to stacking the CDPS. Kinematically, this figure compares favorably with the zero offset
reflectivity computed from velocity and density in Figure 7. Three faults are indicated towards
the top of the section with arrows. The target sand is similarly indicated towards the bottom of
the section.
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Fig. 7. Reflectivity computed from the model velocity and density. The amplitude of each
point represents zero offset reflectivity. The same three faults are indicated here, as in Figure
7, towards the top of the section with arrows. The target sand is similarly indicated towards
the bottom of the section.


