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ABSTRACT
The evaluation of wavenumber integrals often occurs in migration and modelling

algorithms in exploration seismology. The integrals over offset-wavenumbers in
phase-shift migration of common-offset sections are the specific case analysed in this
paper. The accurate algorithm is numerically simple and easy to implement, but it is
computationally very time consuming.

Two approximation methods to compute the offset-wavenumber integrals are
discussed in this paper. The first method is the stationary-phase method, which is
very often used to evaluate the offset-wavenumber integrals. The second method is
called the trapezoidal Filon method, which has been known in synthetic seismogram
theory for decades.

Numerical results from these two methods suggest that the stationary-phase
method has high accuracy when the wavefield extrapolation depth step-size is not
very small relative to the source-receiver offsets of the input common-offset sections.
The trapezoidal Filon method, on the other hand, is more suitable in the evaluation of
offset-wavenumber integrals when the offsets are large relative to the depth step-size.

INTRODUCTION
Migration from separated offset sections has many advantages in seismic data

analysis and interpretation over conventional prestack migration schemes. One of
such advantages is the relative insensitivity to migration velocity errors, which has
been used to perform migration velocity analysis and obtain stacked image by simple
moveout correction on the image gathers (Sattlegger et al (1980), Deregowski (1990),
Kim and Krebs (1993), and Ferber (1994)). Another advantage of common-offset-
section migration is that it provides reflectivity information with preservation of
changes in the offset direction, which is desired for AVO or AVA analysis (Ekren
and Ursin, 1995, 1999). AVO or AVA analysis after migration is a topic drawing
more and more attentions (Mosher et al., 1996 and Tygel et al., 1999).

Most of the earlier work on migration from common-offset sections utilised
diffraction-summation type migration operators because of their independence of the
acquisition geometry. However, because diffraction summation methods have
difficulties to preserve the amplitude (reflectivity) information (among other reasons),
Fourier domain methods are still attractive. A scheme of common-offset-section
phase-shift migration, which involves offset-wavenumber integrals, was discussed by
Popovici (1994) and then extended by Alkhalifah (1997) to a time migration for
anisotropic media. The strategies of the evaluation of the offset-wavenumber integrals
in Popovici (1994) and Alkhalifah (1997) are the same in that they both use the
stationary-phase approximation method. The main difference between these
evaluation techniques lies in the different methods employed in finding the
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stationary-phase point. Popovici (1994) uses a numerical algorithm to find the root
(zero value point) of the phase derivative function, and this algorithm is still
expensive. Alkhalifah (1997) uses an algorithm to find the maximum of the phase
function. By his own assessment, Alkhalifah’s algorithm takes about 10% more
computation time to migrate a single offset section than the time required by the
conventional zero-offset phase-shift method.

In this paper, detailed numerical experiments with the stationary-phase method for
the approximation of the offset-wavenumber integrals will be conducted. In cases
when offsets are large relative to the wavefield extrapolation step-size, the stationary-
phase approximation results in significant errors. Fortunately, in these cases, the
trapezoidal Filon method becomes appropriate. The Filon method is analysed, and
suggested when high accuracy is required for large offsets.

THE INVOLVED OFFSET-WAVENUMBER INTEGRALS
Following the procedure of phase-shift migration scheme from common-offset

sections, as presented in Popovici (1994) and Li and Margrave (1999), an integral
over offset-wavenumber (denoted as kh) needs to be evaluated for given values of:

the wavefield extrapolation depth step-size (denoted as z),

the temporal frequency (denoted as ω),
the wavenumber value in the CDP direction (denoted as kx),
the half source-receiver offset (denoted as h0) of the input section, and
the relevant migration velocity (denoted as v).

The integral can be explicitly written as
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where i is the square root of –1. The direct discritization of this equation results in a
summation method of the evaluation of the integral as
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The integral limits in (1) and the summation limits in (2) are set to (theoretically)
include all the relevant kh values. However, in practice, the limits are often referred to
the kh-range in which the two square roots in equation (1) are both real, i.e., the kh-
range is determined by the following two inequalities:

ω2vkk hx ≤⋅− , ω2vkk hx ≤⋅+ ,
 
(3a)

which is equivalent to one condition
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This limitation (3b) of kh is used throughout this paper except otherwise expressed
explicitly.

The direct summation method in equation (2) is considered accurate for the
evaluation of the integral in equation (1) throughout this paper. The accuracies of the
stationary-phase method and the trapezoidal Filon method are analysed by comparing
these two methods with the direct summation method.

STATIONARY-PHASE METHOD
The integrals for which the stationary-phase method was originally developed

have the following general form (Murray, 1984, and Popovici, 1994):
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where a, b, g(t), h(t), t and λ are all real. As λ tends to infinite, this integral can be
approximated by
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This expression assumes that function h has only one turning point (a relative
maximum or minimum), at t=t0, in the integration range (a, b), which means that

( ) 0th 0 =' , ( ) 0th 0 ≠''
 
and

 
bta 0 << .                                  (6)

This approximation will be referred as ISP in this paper for simplicity.

If there are more than one turning point in the interval (a, b), integral (4) can be
simply evaluated by splitting the integral range into one-turning-point segments.

One special case is that one of the integral limits, a, for example, may be the only
turning point in the integral range. In this case the integral (4) can then be
approximated by a half of the value of ISP in (5) (Murray, 1984), and it is called the
half ISP approximation.

The stationary-phase ISP approximation for the specific wavenumber integral in
equation (1) can be written directly from (5) as
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with λ=1, g=1, and h=φ, and integral variable being kh instead of t. The value kh0 is
the stationary point in the integral range. For offset-wavenumber integral in equation
(1), there can only be one turning point because the second order derivative of
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function φ(kh) is non-zero in the whole kh-range where the integral is evaluated.
Explicitly, the second derivative can be expressed as
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which is a summation of four terms with the same sign (see also Popovici, 1994).

From expression (7), the evaluation of the integral in equation (1) over a certain
range of kh is reduced to a problem by using the values of φ and φ” at only one kh-
location, at which the derivative φ’ becomes zero. Although φ’ can be explicitly
expressed as a function of kh, there is no straightforward algorithm to find its zero
point (Popovici, 1994). Another way to locate the stationary-phase point (zero point
of φ’) is to find where the function φ yields its maximum value (Alkhalifah, 1997).

Figure 1. (a) shows several curves of φ as functions of kh with different z value and all other
related quantities are fixed. Only the dark line’s turning point is indicated. (b) shows the real
part (the dark curve) and the imaginary part (light grey curve) of exp(iφ) (corresponding to the
dark line in (a)). The stationary-phase point in (b) is indicated with a vertical dashed line.
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Figure 1 (a) shows some examples of the phase function φ for different depth steps
and offsets. The turning points are indicated with little vertical lines. Figure 1 (b)
shows the real part (dark curve) and the imaginary part (grey line) of one of the
integrands, exp(iφ), and the stationary-phase point is also indicated with a dashed
vertical line. (The turning point of φ and the stationary-phase point of exp(iφ) always
represent the same thing in this paper.)

Figure 1 (b) demonstrates why the integral of the exponential function exp(iφ) over
the kh range is mainly determined by the behaviour of the function φ (and its
derivatives) at the turning point. The integrand, exp(iφ), oscillates rapidly between –
1.0 and 1.0 at all kh locations except the ones close to the stationary-phase point. The
oscillatory values cancel each other out during the integration, and the main
contribution to the integral comes from the points close to the stationary-phase point.

SHORTCOMINGS OF STATIONARY-PHASE METHOD TO EVALUATE
OFFSET-WAVENUMBER INTEGRALS

In general, the stationary-phase method has plausible accuracy for the
approximation of the offset-wavenumber integral expressed in equation (1). However,
attention should be paid in cases when the approximation accuracy may not be
satisfactory.

The stationary-phase point tends to one of the integral-limits determined by (3b)
when z is relatively small respect to h0. The asymptotic stationary-phase point is the
kh value where one of the square roots in (1) equals zero. This can be seen by
examining the first order derivative of φ, which is
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When the ratio h0/z tends to be large, the value of the summation inside the bracket
has to be large at the turning point to ensure φ’ to be zero at the turning point.
Therefore, the stationary-phase point, i.e., the turning point, tends to be the kh value
where one or both of the square-root terms in the bracket yield very small values.

In practice, when the velocity vertical variation is significant (even without
considering lateral velocity variation), wavefield extrapolation with appropriate
accommodation of the velocity variation usually limits the depth step to a much
smaller size relative to the offset range. In such cases, the stationary-phase point in
the non-evanescent region of kh is very close to the critical point. In addition, the
offset-wavenumber is always sampled with a certain increment, and very often the
stationary-phase point cannot be very well separated from the critical point. Figure 2
shows some curves of φ for different step size z’s, in a half-offset range of 0 to 2000
m. The stationary-phase points of all the curves are indicated by "+" symbols.
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Figure 2. Curves of φ for different values of h0, which is sampled from 0 to 2000 m with 100 m
increment, where (a) shows curves with z = 50 m and (b) the curves with z = 200 m. All the
other quantities are fixed at the same values for all the curves.

In Figure 2, many of the stationary-phase points are practically (numerically) at the
integral limit point. This results in integration values that are closer to the half ISP
approximation instead of the full ISP approximation. Some experiments with ISP and
half ISP are shown Figure 3, where the approximation errors of the ISP and the half ISP
are plotted. The half ISP is a better approximation when the stationary-phase points
tend to one of the integral limits.
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Figure 3. Approximations of stationary-phase method using full ISP and half ISP

approximations. (a) shows three curves corresponding to real parts of accurate values (grey
line), ISP values (dashed dark line) and half ISP values (dark solid line) for different h0 values
(from 0 to 2000 m) and fixed z = 50 m; (b) is the approximation errors (real part only) of ISP

(dashed line) and half ISP (solid line); and (c) is the absolute error of ISP (dashed line) and half
ISP (solid line) relative to the absolute accurate values.

In Figure 3(a), it seems that both the ISP and half ISP approximations are quite good
because no evident visual deviations can be recognised from the three curves. In fact,
even the approximation errors, as shown in Figure 3(b), are all small numbers, the
approximations are unacceptable because the relative errors, as shown in Figure 3(c),
are “wildly” large. With relative errors greater than 100%, some of the ISP and half ISP
approximations involve more errors than simply taking zero as the integral values. A
conclusion can be drawn from the results in Figure 3 that when depth-step z is small
relative to the half-offset value h0, the stationary-phase method should not be used to
evaluate the offset-wavenumber integrals expressed in (1).

For example, when z = 50 m and h0 = 400 m, the stationary-phase point is very
close to the integral limit (Figure 4(a)), and the integrand is basically oscillatory
throughout the whole integral range. The oscillatory curve shown in Figure 4(b) is the
real part of the integrand function exp(iφ). Practically speaking, the phase is not very
“stationary” at the stationary-phase point in this example, and the contribution from
the local values of the integrand around the stationary-phase point does not dominate
as much as it does for an integrand function shown in Figure 1(b).
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Figure 4. Function φ (a) and exp(iφ) (real part only) (b) for z=50 m and h0=400 m. Other
quantities are the same as in Figure 3. In this case, the stationary-phase point is close to the
kh integral limit.

Figure 5: Migration dip-limits limit the offset-wavenumber integral to a smaller range and often
make the stationary-phase point lying outside the integral range. The solid-line curves are
drawn for 90-degree dip limit, the two vertical dashed-lines indicate the integral range
determined by a 60-degree dip-limit. Many of the stationary-phase points (plotted with
markers “+”) lie outside the narrower integral range. In this figure, z is fixed at 500 m, and h0

ranges from 0 to 2000 m. It can be seen that all the approximations for 90-degree dip-limit
cases are very accurate, while the approximations for 60-degree cases become
unacceptable when h0 is greater than 500 m. Further more, when h0 is greater than 900 m,
simply setting the integral value to be zero gives better approximations.
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For many practical reasons, migration algorithms often involve dip limits. As
mentioned above, the widest range of the kh-integral (1) is determined by the kh
values where the wave-components related to these kh-values (and given kx and ω) are
becoming evanescent. A migration dip-limitation of less than 90 degrees limits kh to
even narrower ranges. In such cases, the stationary-phase points may often reside
outside the integral range even for not very large h0/z ratio. An example with 60-
degree dip-limit is shown in Figure 5 where z = 500 m and h0 ranges from 0 to 2000
m. This involves more difficulties for applying stationary-phase approximation to the
offset-wavenumber integrals, or more strictly, the stationary-phase approximation is
not valid any more. The approximation results are shown in Figure 6.

Figure 6: Stationary-phase approximations for 90-degree (a) and 60-degree (b) dip limits.

Fortunately, in cases where h0/z is relatively large, φ as a function of kh is (at least
piecewisely) close to a straight line, i.e., φ~-h0kh, which can be seen graphically from
the curves in Figure 2. This piecewise linear approximation of the function φ satisfies
the conditions of the trapezoidal Filon method for the evaluation of wavenumber
integrals.

TRAPEZOIDAL FILON METHOD
The trapezoidal Filon method (Frazer, 1988) is an approximation algorithm to

evaluate an integral with a general form of

( ) ( )∫
Γ

dpepf psg .  (10)

If the two functions f and g can be approximated piecewisely as linear function,
then trapezoidal Filon method provides an approximation of the integral (10) as
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where ( ) 12 ppp −=δ , and ( ) ( ) ( )12 pupuu −=δ  with u representing any function of p (f,
esg and g). The summation is over all the pieces (segments of p) on which both f and g
can be approximated by straight lines. Equation (11) is called the trapezoidal Filon
approximation.

For the integral expressed in equation (1), the variable p becomes kh, the function f
takes the constant value 1, and g is equal to φ. The constant s is simply the square root
of –1. The trapezoidal Filon approximation (11) becomes
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and the only condition for the approximation is that function φ can be approximated
by linear function within each and every kh-segment (kh1, kh2).

If possible, different sizes of interval (kh1, kh2) within the integral range should be
more efficient. However, determining the length of each (kh1, kh2) raises another
problem and may also require more computation time. For simplicity, the following
analysis of the Trapezoidal Filon method is based on equal-size intervals throughout
the whole integral range.

Figure 7. Trapezoidal Filon and stationary-phase approximations with depth step z = 50 m
and the half-offset h0 ranging from 0 to 2000 meters. (a) shows the integral values evaluated
by the accurate method, two Filon approximations and the stationary-phase approximation.
(b) shows the approximation errors of these methods and (c) shows the relative errors in
percentage of the accurate values.
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For depth step z = 50 m, which was used for the results shown in Figure 3 and
Figure 4, two different interval size Filon approximation results are shown in Figure 7
with comparisons with the results from accurate method and the stationary-phase
method. In Figure 7 (a), the integral values from different methods are shown
together, and no significant difference can be seen. In Figure 7 (b), on the other hand,
the approximation errors relative to the accurate values show that the two Filon
approximations are better than the stationary-phase approximations. The symbol
“Filon (3)” indicates the results computed using the Filon method with linear-function
approximation for every 3 consecutive kh samples, while “Filon (12)” stands for the
use of the Filon method with linear-function approximation for every 12 consecutive
kh-samples. Figure 7 (c) shows the relative errors of the three approximations. Note
that the Filon approximations have much better stability at large offsets.

Figure 8. The relative errors represented as percentages of the absolute values of the
approximation errors (which are complex values) over the absolute values of the accurate
results (complex too).

Figure 8 represents the relative errors of the Filon approximations with four
different interval sizes, which are denoted as “Filon (3)”, “Filon (12)”, “Filon (30)”,
and “Filon (60)”. The results in this figure are obtained with z = 20 m, which is more
likely the size practically used for wavefield extrapolation with strong vertical
variation. For comparison, the stationary-phase approximations are shown as the
dotted lines. Note that the stationary-phase approximations are not acceptable in this
case, especially for large offsets.

EFFICIENCY COMMENTS
Although the main purpose in experimenting with different approximation

algorithms is to find a method with less computation cost, the accuracy should always
be a concern. The above analysis concentrates on the ability of the stationary-phase
and the trapezoidal Filon methods to provide acceptable approximations of the offset-
wavenumber integrals expressed in equation (1). The experiment codes were all
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implemented in Matlab, and they may not be optimised. However, the following table
of floating-point operations counted by Matlab function “flops” for different methods
should still provide an intuitive indication of how fast or slow an algorithm might be.
These operations do not include the evaluation of φ as a function of kh, which takes
time especially for the direct summation method.

Table 1: Number of floating point operations for different algorithms

Methods Number of operations

Accurate summation 9559

Stationary-phase 671

Filon (3) 14959

Filon (12) 2759

Filon (30) 1059

Filon (60) 559

Filon (100) 359

Another efficiency aspect of these methods is the number of kh-samples where the
function φ and/or its derivatives need to be evaluated. Basically, the stationary-phase
method needs the values of φ and its second derivative at only one sample (the
stationary-phase point). The computation cost of stationary-phase method is the time
used to find the stationary-phase point, which can be expensive. For the trapezoidal
Filon method, the cost is directly related to the interval size where the linear function
is used to approximate the function φ. Longer interval results in a faster algorithm,
but provides less accuracy.

Note that in Figure 8, Filon (60) provides better approximation, except at h0 = 0,
100 and 200 m, and uses less operations than the stationary-phase method as shown
in Table 1.

MULTI-STEP WAVEFIELD EXTRAPOLATION
In practical implementation of phase-shift migration algorithm, the wavefield at

any depth may be directly obtained by a multi-step extrapolator, such as the
nonstationary migration filters in the v(z) f-k algorithm (Margrave, 1998, Li and
Margrave, 1998). In these cases, the offset-wavenumber integral can be written as
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Here the function φ and its derivatives may not have analytical expressions, such
as equations (8) and (9). Therefore, the application of the stationary-phase
approximations may require numerical evaluation of the function φ and its
derivatives. This may involve some more computation cost than the single-step
wavefield extrapolator may. However, the step-size (still denoted as z) in equation
(13) practically is much larger than the single depth step in equation (1), and the z-to-
h0 ratio is no longer a problem except for the image of very shallow layers. As shown
in Figure 6(a), where z = 500 m and h0 ranges from 0 to 2000 m, the stationary-phase
approximation has very high accuracy when migration dip limit is not an issue.

CONCLUSIONS
This paper presents some numerical results of the evaluation of the offset-

wavenumber integrals involved in phase-shift migration of common-offset sections.
The stationary-phase method may not be appropriate when wavefield extrapolation
depth step is small relative to the offset values, although it has been used by many
authors to approximate these integrals. It also shows that even when step size is not
small, migration dip limit may also introduce difficulties for applying stationary-
phase method. The experiments on the trapezoidal Filon method show that in the
cases where the stationary-phase method failed to provide accurate approximations,
the Filon method may be a better choice. The cost of trapezoidal Filon method can be
comparable to stationary-phase method, and might be even faster.

The stationary-phase approximation of an integral of some wavenumber function
depends on the values of the function at locations close to the stationary phase point.
This implies that the values of the function at locations far away from the stationary-
phase point are not taken into account at all. Our experiments and the results of other
authors (e.g., Popovici, 1994) show that stationary-phase approximation method has
very high accuracy except for very small depth step. Multi-step extrapolation scheme,
equation (13), can practically overcome the small depth-step extrapolation problem
except the very shallow part of the imaging results.

FUTURE WORK
Many authors found that the practical computation time may most be spent on

searching the stationary-phase point. We propose another way to use stationary-phase
method. That is, instead of locating the stationary-phase point itself, we could find a
much smaller integral range which includes the stationary-phase point, and then
calculate the integral only over this smaller range accurately. There should be faster
methods to find such smaller ranges rather than to locate the stationary-phase point.
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