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Change of bulk and shear moduli of dry sandstone with
effective pressure and temperature

John J. Zhang and Laurence R. Bentley

ABSTRACT

The bulk and shear moduli of dry sandstone increase with effective pressure and
decrease with temperature and the rate of change varies with effective pressure and
temperature. In order to calculate the effect of effective pressure, a rock physics
model based on pore aspect ratio spectra (KT model) is adopted in computation of
elastic moduli and velocities. The pore aspect ratio spectra for a set of water-saturated
sandstone samples are first assumed to be proportional to that of the standard sample,
and are then adjusted to fit velocity measurements. Dry bulk and shear moduli at
different pressures are calculated with the optimized pore aspect ratio spectra by
setting the bulk moduli of contained fluid equal zero. It is found that the exponential
relationship exists between the rate of change of elastic moduli and effective pressure
as follows:

    dKd/dP = 0.746exp(-0.0773P)

    dµd/dP = 0.372exp(-0.0791P)

The effective pressure is between 5-40 MPa and the temperature at 220 C in
laboratory. The temperature effect, which is due to pore volume change, is manifested
as a more or less linear trend, and is modeled, based on experimental data, as straight
lines:

      dKd/dT = -0.0155

    dµd/dT  = -0.0065

The temperature ranges from 10 to 2000 C and the effective pressure is from 25 to 500
MPa in laboratory.

INTRODUCTION

Elastic moduli of dry rock vary as a function of effective pressure and temperature.
Both bulk and shear moduli increase with effective pressure and decrease with
temperature. The increase can be explained in terms of the closing of cracks and
pores (Toksoz et al., 1976; Cheng et al., 1979; Walsh, 1965), whereas the decrease is
largely due to pore volume change. As effective pressure increases, the cracks and
flat pores of low aspect ratio close first, leading to a rapid increase in elastic moduli.
At higher effective pressure, the spheroidal pores of high aspect ratio become thinner
and close, but the rate of pore closing slows down due to the difficulty in the closing
of these pores. As temperature increases, pore volume increases and the differential
thermal expansion of minerals may cause cracks to open, decreasing elastic moduli.

In this paper, the KT model along with the expression of effective pressure
dependence of elastic moduli is introduced. The pore aspect ratio spectra for 60
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water-saturated sandstone samples (Han et al, 1986) are assumed to be proportional to
that of the standard sample and are then adjusted to fit velocity measurements. The
dry elastic moduli of these samples are subsequently calculated by setting the bulk
modulus of contained fluid equal to zero. The slope of the dry elastic moduli with
respect to effective pressure is modeled using an exponential function. For the effect
of temperature, a more or less linear trend is found between temperature and dry
elastic moduli based on experimental data.

THEORETICAL MODELS

Nearly all rocks contain pores (Brace et al., 1972), which differ in shape from
circular geometry to flat cracks and contacts (Cheng et al., 1979; Kowallis et al.,
1984; Kuster and Toksoz, 1974; Sprunt and Brace, 1974; Timur et al., 1971; Toksoz
et al., 1976). These pores of varying shape play a significant role in the determination
of elastic moduli and wave velocities of rocks. Kuster and Toksoz (1974) propose a
model to calculate elastic moduli based on pore geometry (pore aspect ratio
spectrum). The model for spheroidal pores saturated with a fluid can be expressed as
follows (Wang and Nur, 1991):

where an is the nth aspect ratio of the pores, C(an) is the volume fraction of an, Ks and
µs are the bulk and shear moduli of the rock solid, respectively, and Kf is the bulk
moduli of contained fluid, (expressions for Tiijj and Tijij are given in Appendix A).
The model for circular pores filled with a fluid can be expressed as:

K =
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where C is the volume fraction of circular pores. The model for the combination of
circular pores and other pore shape is derived as:

The assumptions involved in the derivation of the above equations are
macrohomogeneity, isotropy and a dilute concentration of pores.

According to the model, K and µ, then velocities, of a rock can be calculated when
the pore aspect ratio spectrum and elastic moduli of rock solid and the bulk moduli of
the contained fluid are known.

In order to model the changes in the elastic moduli (and therefore seismic
velocities) of a rock as a function of pressure, the rate of crack closing with pressure
must be calculated. Toksoz et al. (1976) give the following expression for the
fractional change in the volume of pores of aspect ratio a and pressure P:

where all the Ei are functions of the aspect ratio and some effective matrix moduli K1A

and µ1A defined as the effective moduli of the rock with all the pores except those
with aspect ratio a. KA* is the static bulk modulus of the empty rock (Toksoz, et al.,
1976), but because of the lack of such data it is usually taken to be the dynamic bulk
moduli of the dry rock. The expression for Ei is given in appendix B. Given that the
volume of a spheroid is represented by C=4•R3a/3, with R as the radius of the
spheroid, and assuming that changes in R are small, the following applies:

dC/C = da/a

The fractional rate of change of aspect ratio is therefore the same as that of the
fractional change of porosity.
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DETERMINATION OF PORE ASPECT RATIO SPECTRA

Velocity measurements obtained in the laboratory yield important information
about pore aspect ratio spectra. Laboratory data from previous work (Han et al.,
1986) are employed. These samples for velocity measurement were obtained from
well cores or quarries, with porosities from 2 to 30% and clay content from 0 to 50%.
Some are well-consolidated and others poorly-consolidated. These are considered to
be representative of different kinds of sandstone. The Vp measurements of water-
saturated samples with effective pressure from 5MPa to 40MPa are shown in Figure
1. The slope of velocity versus effective pressure is similar for samples considered. If
some abnormal points are rejected, the Vp change from 5 MPa to 40 MPa is around
0.3 km/s for these samples. This implies that pore shapes are similarly distributed
(Tosaya and Nur, 1982) and also that the velocity versus effective pressure of these
dry samples may be parallel.

Figure 1. Vp versus effective pressure for sandstone samples

Calculation of the pore aspect ratio spectra from velocity measurements presents
an inverse problem. Toksoz et al. (1976) and Cheng et al. (1979) obtained pore aspect
ratio spectra of several rock samples from velocity measurements using inversion
methods and found that volume fractions of pores with aspect ratio greater than 10-4

could be determined uniquely and the maximum number of aspect ratios that could be
resolved with the available data is around 10. Based on the conclusion and the
possibility of similar distribution of pore shapes, the modified pore aspect ratio
spectrum of Navajo sandstone is employed as a standard sample (Table1). We assume
any other sandstone of porosity φ will have a pore aspect ratio distribution related to
that of the standard sample according to the proportionality:

 Ci(ai)/Ci(ai)
standard = φ/φstandard,

where Ci is the volume fraction of pores of aspect ratio ai. In other words, the pore
geometry of any sandstone is a scaled replica of the standard sample’s.
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Table 1. Pore aspect ratio spectrum of Navajo sandstone (after Cheng et al., 1979)

       ai        Ci          ai          Ci          ai          Ci

        1      0.1416       0.0028      0.0002       0.0009    0.000065

      0.1      0.0210       0.0021      0.00015       0.0006    0.00011

     0.01     0.00024       0.0016      0.00018       0.0003    0.00011

   0.0035     0.00014       0.0012      0.00014       0.0001    0.00001

φ = 16.41 %, Ks = 34 GPa, µs = 26 GPa

The pore aspect ratio spectra obtained above are further adjusted to fit velocity
measurements. Figures 2, 3, 4, and 5 are examples of the results. The average error
bar from the fitting for 60 water-saturated samples is ±0.0646 km/s. The adjusted
aspect ratio spectra of the four samples are presented in Tables 2, 3, 4 and 5.

The adjusted pore aspect ratio spectra of 60 samples were used to calculate the
corresponding dry elastic moduli and velocities of these samples by setting Kf equal 0.
As shown in Figures 2, 3, 4 and 5, the slope of dry velocity versus effective pressure
is steeper than that of wet velocity, especially at low effective pressure, due to the
existence of cracks. At higher effective pressure, dry velocities come close to, and
even exceed, wet velocities due to the end of crack closing.

Figure 2. Velocities versus effective pressure for sample 17. Dashed blue lines denote
calculated dry velocities, solid black lines denote calculated water-saturated velocities and
dotted lines with * denote laboratory-measured water-saturated velocities. Upper curves are
compressional wave, and lower curves are shear wave.
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Figure 3. Velocities versus effective pressure for sample 34. Dashed blue lines denote
calculated dry velocities, solid black lines denote calculated water-saturated velocities and
dotted lines with * denote laboratory-measured water-saturated velocities. Upper curves are
compressional wave and lower curves are shear wave.

Figure 4. Velocities versus effective pressure for sample 42.  Dashed blue lines denote
calculated dry velocities, solid black lines denote calculated water-saturated velocities and
dotted lines with * denote laboratory-measured water-saturated velocities. Upper curves are
compressional wave and lower curves are shear wave.
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Figure 5. Velocities versus effective pressure for sample 46. Dashed blue lines denote
calculated dry velocities, solid black lines denote calculated water-saturated velocities and
dotted lines with * denote laboratory-measured water-saturated velocities. Upper curves are
compressional wave and lower curves are shear wave.

Table 2. Pore aspect ratio spectrum of sample 17

       aI        CI          aI          Ci          ai          Ci

       1    0.1549       0.0028      0.00021       0.0009     0.000053

     0.1    0.0236      0.0021      0.00015       0.0006     0.00010

    0.01    0.00027      0.0016      0.00018       0.0003     0.00011

  0.0035    0.00014      0.0012      0.00014       0.0001     0.000013

φ = 17.98 %, Ks = 33 GPa, µs = 26 GPa

Table 3. Pore aspect ratio spectrum of sample 34

       ai        CI          ai          Ci          ai          Ci

       1    0.0709       0.0028      0.00019       0.0009     0.00013

     0.1    0.0000084      0.0021      0.00017       0.0006     0.00015

    0.01        0      0.0016      0.00018       0.0003     0.000088

  0.0035    0.00016      0.0012      0.00016       0.0001     0.000049

 φ = 7.22 %, Ks = 28 GPa, µs = 22 GPa
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Table 4. Pore aspect ratio spectrum of sample 42

       ai        CI          ai          Ci          ai          Ci

       1    0.0775       0.0028      0.00018       0.0009     0.00011

     0.1    0.00051      0.0021      0.00015       0.0006     0.00013

    0.01        0      0.0016      0.00017       0.0003     0.000082

  0.0035    0.00015      0.0012      0.00015       0.0001     0.00004

φ = 7.92 %, Ks = 28 GPa, µs = 20 GPa

Table 5: Pore aspect ratio spectrum of sample 46

       ai        Ci          ai          Ci          ai          Ci

       1    0.0823       0.0028      0.00021       0.0009     0.00015

     0.1         0      0.0021      0.00019       0.0006     0.00017

    0.01         0      0.0016      0.00020       0.0003     0.000081

  0.0035    0.00019      0.0012      0.00019       0.0001     0.000039

φ = 8.37 %, Ks = 30 GPa, µs = 21 GPa

 CHANGE OF ELASTIC MODULI WITH EFFECTIVE PRESSURE

The dry elastic moduli of the 60 samples evaluated above are differentiated with
respect to effective pressure at a series of effective pressure points with the results
plotted in Figures 6 and 7. An exponential function was found to best represent the
data as follows.

  dKd/dP = 1.047exp(-0.1356P)     (1)

  dµd/dP = 0.459exp(-0.1206P)      (2)

The major uncertainty for these two equations arises from high values at low effective
pressure. Another problem is that the two equations are much lower than the majority
of data points at 20-40 MPa, although they are best fitting. To solve these problems,
the derivatives of 60 samples at each effective pressure point are averaged, and the
other two regression equations are obtained as follows.

  dKd/dP = 0.789exp(-0.0612P)      (3)

    dµd/dP = 0.387exp(-0.0644P)       (4)

Equations (3) and (4) rectify the two problems of equations (1) and (2), but are
slightly large at high effective pressure. A compromise can be reached by averaging
the two equations for bulk and shear moduli respectively and providing the following
relationship:

    dKd/dP = 0.746exp(-0.0773P)      (5)

    dµd/dP = 0.372exp(-0.0791P)       (6)
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dKd/dP versus effective pressure
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Figure 6. Slope of bulk moduli versus effective pressure for 60 samples

Figure 7. Slope of shear moduli versus effective pressure for 60 samples

In order to test the validity of these regression lines, velocity and elastic modulus
measurements in laboratory are compared with the results calculated from the above
equations. Gregory (1976) makes a series of velocity and density measurements for a
group of rocks including sand and sandstone. Table.3 in his paper lists Vp, Vs and
elastic moduli for the Gulf Coast sand. Table 6 shows the test results, which include
laboratory measurements and those calculated with Equations 5 and 6.
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Table 6. Dry elastic moduli at different pressures for the Gulf Coast sand (laboratory
measurements versus calculations from our equations

Pressure
(MPa)

Measured K (GPa,
Gregory,1976)

Calculated
K (Gpa)

Error Measured µ (Gpa,
Gregory, 1976)

Calculated
µ (GPa)

Error

    0          2.8983    2.8983    0         6.9808    6.9808     0
   3.4          3.6280    5.1288   1.50         7.2686    8.0888    0.82
   6.8          4.9728    6.8439   1.87         7.5843    8.9356    1.35
  13.6         7.8438    9.1757   1.33         8.5360   10.0773    1.54
  20.4         9.1888    10.5553   1.36         9.7328   10.7439    1.01
  27.2        10.3319    11.3705   1.03        10.6481   11.1333    0.48
   34        10.9787    11.8500   0.87        11.3814   11.3606   -0.02
  40.8        11.5779    12.1373   0.55        11.8966   11.4934   -0.40
  47.6        11.9879    12.3057   0.31        12.3306   11.5710   -0.76
  54.4        12.3671    12.4053   0.04        13.6943   11.6162   -2.07
  61.2        12.6176    12.4641  -0.15        12.9844   11.6427   -1.34
   68        12.7857    12.4990  -0.28        13.2136   11.6581   -1.55

The measured bulk and shear moduli at P=0 are used as the starting values. The
values in the column ‘Calculated’ are calculated as follows:

Kdn = -9.651[exp(-0.0773Pn)-1] +Kd0 (7)

µdn = -4.699[exp(-0.0791Pn)-1] +µd0 (8)

where Kdn and µdn  are the bulk and shear moduli at the nth pressure point Pn (e.g.,
n=1, P=3.4MPa), and Kd0 and µd0  are the bulk and shear moduli at zero pressure.

The average error bar between measured and calculated values is ±1.11 (GPa). The
major source of error may be due to experimental error. For example, the shear
modulus decreases with increasing effective pressure between P=54.4 and P=61.2
MPa, and the slope of the experimental bulk moduli reverses between P=3.4 and
P=6.8 MPa. Our figures seem more reasonable.

Berea sandstone is a classical sandstone for rock physics study. Its velocities were
read from Cheng’s paper (1979, Figure 1) and are listed in Table 7, which also
includes the elastic modulus results. The porosity of Berea sandstone is 0.163 and the
density of its rock solid is assumed 2.7 gm/cm3. The density is calculated as (1-
16.3%)*2.7.
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Table 7. Dry velocities and elastic moduli for Berea sandstone

Pressure
(MPa)

Density
(kg/cm3)

Vp (km/s) Vs (km/s) K (GPa) µ (GPa) Calculated
K (GPa)

Calculated
µ (GPa)

5 2.26 3.8 2.4 15.3 13 15.3 13
10 2.26 4.0 2.53 16.7 14.6 17.4 14.0
15 2.26 4.1 2.6 17.6 15.3 18.8 14.7
20 2.26 4.15 2.65 17.8 15.8 19.8 15.2
25 2.26 4.2 2.67 18.4 16.1 20.5 15.5
30 2.26 4.23 2.71 18.4 16.6 20.9 15.7
40 2.26 4.25 2.72 18.5 16.72 21.4 16.0
50 2.26 4.27 2.725 18.83 16.78 21.6 16.1

The calculation starts at P=5 MPa. The average error bar between measured and
calculated values is ±1.59(GPa), which is greater than that for Gregory’s samples.
The discrepancy may be due to the inaccurate reading of the velocity from the figures
and the inaccurate calculation of density.

In all, the relationship of the slope of elastic moduli with respect to effective
pressure is sufficiently accurate to enable the computing of the change of elastic
moduli with an error bar within ±1.6 GPa. The steeper slope at lower pressure in the
relationship results from the fact that no experimental data are available at zero or
very low pressure, a problem that will be considered in future research.

CHANGE OF ELASTIC MODULI WITH TEMPERATURE

Temperature affects elastic moduli of a rock by changing the elastic moduli of the
rock solid (e.g. quartz and clay) and its pore aspect ratio spectrum. The former is
negligibly small (Carmichael, 1989) and will not be considered. The latter plays a
significant role. When temperature increases, pore volume increases (even if the
magnitude is small) and differential thermal expansion of the constitute minerals may
cause new cracks to open (Hellwege, 1982), especially at grain boundaries. The
opening of cracks occurs whenever temperature increases at a rate higher than 1000C
/100MPa at high temperature (Kern, 1978). Below 2000C, however, the experimental
data (Wang and Nur, 1988; Carmichael, 1989) do not observe the opening of cracks,
a non-linear event. Therefore, with the exception of extreme thermal event such as
those associated with steam flooding, the change of elastic moduli with temperature is
attributable to the pore volume change, a linear event.

In order to find the slope of the straight line, velocity measurements and their
change with temperature are collected. Carmichael’s (1989) data for dry sandstone
are plotted in Figures 8 and 9, which show a linear trend for the bulk and shear
moduli. The slope can be approximated as:

dKd/dT = -0.0155 (9)

 dµd/dT = -0.0065 (10)
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The above equations are used to calculate elastic moduli in order to assess whether
or not the error is reasonable. Wang and Nur (1988) measure a series of velocities at
different temperatures. Table 8 shows the measured versus calculated values.

Figure 8. Bulk moduli versus temperature for sandstone (after Carmichael, 1989)

Figure 9. Shear moduli versus temperature for sandstone (after Carmichael, 1989)

Temperature versus bulk modulus of dry sandstone
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Table 8. Dry velocities and elastic moduli for Massillon sandstone

T (oC) Density(
kg/cm3)

Vp (km/s) Vs (km/s) K (GPa) µ (GPa) Calculated
K (GPa)

Calculated
µ (GPa)

20 2100 3.08 2.16 6.87 9.79 6.87 9.79
30 2100 3.06 2.14 6.84 9.62 6.72 9.72
40 2100 3.04 2.12 6.82 9.44 6.57 9.66
50 2100 3.00 2.11 6.43 9.35 6.42 9.59
60 2100 2.99 2.10 6.42 9.26 6.27 9.53
80 2100 2.98 2.09 6.42 9.17 5.97 9.40
100 2100 2.95 2.08 6.17 9.08 5.67 9.20
120 2100 2.94 2.05 6.39 8.82 5.37 9.14

The error is small. The change in bulk and shear moduli with temperature is also
small. In the case of Massillon sandstone, 7% and 10% changes for bulk and shear
moduli respectively occur at 100oC change in temperature.

CONCLUSION

The KT rock physics model was used to calculate elastic moduli and velocities.
The theory is based on the assumption that elastic moduli of a rock are determined by
its pore aspect ration spectrum, the elastic moduli of the rock solid and the bulk
modulus of the pore fluid. With the model, the pore aspect ratio spectra of 60 water-
saturated samples were estimated using velocity measurements. Then the pore aspect
ratio spectra were used to calculate the dry bulk and shear moduli and velocities of
the dry rock.

The dry bulk and shear moduli of 60 samples at different pressures were used to
determine exponential relationships for the change in bulk modulus with respect to
effective pressure and the change in shear modulus with respect to effective pressure.
The relationships were validated using independent measurements on the Gulf Coast
sand and Berea sandstone.

The bulk and shear moduli were found to decrease linearly with temperature below
2000C. The temperature effect is minimal.
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Appendix A

where

F1=1-[3/2(g+θ)-R(3/2g+5/2θ-4/3)]

F2=1-[1+3/2(g+θ)-R/2(3g+5θ)]+B(3-4R)-1/2(3B-1)(3-4R)(g+θ-R(g-θ+2θ^2)

F3=1-1/2(R(2-θ)+(1+a^2)/a^2g(R-1))

F4=1-1/4[3θ+g-R(g-θ)]

F5=Bθ(3-4R)-R(g+θ-4/3)+g

F6=B(1-θ)(3-4R)-g+R(g+θ)

F7=2-1/4[9θ+3g-R(5θ+3g)]+Bθ(3-4R)

F8=B(1-θ)(3-4R)-1+2R-g/2(R-1)-θ/2(5R-3)

F9=Bθ(3-4R)-g(R-1)+Rθ

B=1/3 Kf/Ks

R=3µs/(3Ks+4µs)

θ=a/[(1-a^2)^(3/2)](acos(a)-a(1-a^2)^0.5)

g=a^2/(1-a^2)(3θ-2)
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Appendix B
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