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ABSTRACT

The velocity-stress finite-difference formulation for wave propagation through 3D
elastic media is presented. The wave equations are solved by a finite-difference
scheme using fourth-order spatial operators and a second order temporal operator on a
staggered grid. The condition for the stability and dispersions are discussed.

INTRODUCTION

Modern computational power makes possible realistic simulations of elastic
wavefields at frequencies of interest. The most general numerical methods for
modelling are grid-based techniques that track the wavefield on a dense 3D grid of
points, e.g. the finite-difference, finite-element and pseudospectral methods. The
study of wavefield propagation with 3D finite-difference methods has contributed to a
better understanding of wave-path effects and the response of complex structures. The
approach using a staggered grid in finite-difference methods has the advantage of
accuracy with less computational effort because it allows a larger grid size.

The staggered-grid finite-difference algorithm solves the first-order elastodynamic
equations of motion expressed in terms of velocity and stress. In seismic applications,
the velocity-stress formulation was first used by Madariaga (1976) to model fault-
rupture dynamics. This technique was extended to model seismic wave propagation in
2D media (Virieux, 1984, 1986; Levander, 1988) and 3D media (Randall, 1989). The
advantages this formulation are (1) source insertion can be expressed by velocity or
stress; (2) a stable and accurate representation for a planar free-surface boundary is
easily implemented; (3) since the finite-difference operator are local, the entire model
does not have to reside in memory at once; (4) it is easily extended to high-order
spatial difference operators and (5) the algorithm is easily implemented on scalar,
vector, or parallel computers.

EQUATIONS OF MOTION
Based on elastic wave theory, the equations describing elastic wave propagation
within 3D, linear, isotropic elastic media can be written as
pattux = axlz-xx +ayTxy +aszz + fx
pou, =07, +9d,7, +0.7 +f,

(1

pattuz :axTxZ +ayTyz +aszz +f;
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and the stress-strain relations describe the material behaviour as

7. =(A+2u)0 u +A0 u,+d.u.)

7, =(A+24)0 u, + A0 u, +9.u.)

T, =(A+2u)0 u +A0u, +9d u,)

T, =H0O,u, +0d.u,) 2)
7. = M0 u, +9.u.)

7, =H(0.u, +0,u.)

In the equations above, (u,u,u.) are the displacement components;
(Tex, Ty, Tz Ty &, ) are the stress components; (fy, f,, f.) are the body-force
components; p is the density; A and g are Lame constants and the symbol d, is the
shorthand representations of d/dc.

The equations in (1) can be formulated into a set of first-order differential
equations by first differentiating equations (2) with respect to time and then
substituting the velocity components (v, v, v.) for the time-differentiated
displacements. The resulting sets of equations can be written as

v, = (0.7, +0,7,+0.7.+ 1))
P

+0,7,,+9.7,.+f,)

x Yxy

v, = (0.
p (3)

XXz

0v. =L (@.7.+0,7,+0.7.+ 1)
P

and

0,7, =(A+2u)d,v,+ A0 v, +0_v.)

0,7, =(A+24)d v, + A v, +9.v,)

0,7, =(A+24)d.v. +A0,v,+9d,v,)

9,7, =@, v, +9,v)) (4)
9,7, =H(d,v,+9,v,)

0,7, =H(.v,+0v,)

Equations (3-4) can be easily solved by finite differences because the equations are
all first-order in their derivatives.
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FINITE-DIFFERENCE IMPLEMENTATION

The staggered grid defines some of the velocity and stress components shifted
from the locations of other components by half the grid length in space (Figure 1).
One of the attractive features of the staggered-grid approach is that the various
difference operators are all naturally centred at the same point in space and time. The
system is not only staggered on a spatial grid but also temporally, which means that
the velocity field can be updated independently from the stress field. This makes the
scheme efficient and concise.

By using second-order approximation for time derivatives, the solution of
equations (3-4) can be expressed in a discrete form by

ViR =y L Ath (D, T, +D ., +D.1 )|,

xli,j.k x\t 7.k z%xz

n+l/2 _.n-1/2 n
Vijis1/2, j+1/2,k _Vy\i+1/2,j+1/2k+Atb (DxTx +D, +D.7 )|i+1/2,j+1/2,k

z%yz

5)
n+l/2 _ . n-1/2 (
Voie1)2,jk41/2 = Valitl/2,j.k+1/2 +Ath_ (D, 7. +D 7, .+D.7_) |i+1/2,j,k+1/2
and
n+l _ antl n+1/2
Tviv1/2,5k = Coqiviso gk T A{(A+2u)D,v, + A(Dyvy +D.v.)] |i+1/2,j.k

1 1 1/2
T;;|1+1/2 j.k = T;l;|t+l/2 J.k + At[(ﬂ’ + 2#)Dyvy +2’(va)¢ +Dzvz )] |:'1++|/2,j.k
+ + +1/2
T:z\l+l/2 ik T:z\l+l/2 kT A[(A+2u)D.v, + A(D,v, + Dyvy )] |:l+1/2,j.k

o =" +Afu, (D, +D,v)] |,.",j1+/132,k (6)

xyli,j+1/ 2,k xyli, j+1/2,k
n n n+l/
Tx;plj k+1/2 = szJ\rz]j o TAHLU (D v, +D.v, )] |1j}kil/2
n+l n+l n+l/2
Ty;1+1/2 J+1/2,k+1/2 = T}Z‘Tt+1/2 J+1/2,k+1/2 + At[ﬂxyz (Dzvy + Dyvz )] |i-:—1/2,j+1/2.k+1/2
In the equations above, the superscripts refer to the time index, and the subscripts
refer to the spatial index. At is the time step and D, represents the central finite
difference operator of the spatial derivatives of d, with respected to variable ¢. The
effective parameters for the buoyancy (defined as //p) and the rigidity | are given by
(Graves, 1996)
b, = (b,

X z,jk H—lj

/2
b, =(b )/2

b _(bljk+bljk+l)/2

z

ijk lj+1k

(7

and
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M, = (l/lui,j,k +1/:ui+l,j,k +1/ﬂi,j+1,kl/ﬂi+1,j+1,k)/4
H.= (l/lui,j,k + l/ﬂm,j,k +1/lui,j,k+l +1/ﬂi+1,;,k+1)/4

8
:uyz = (l/lui,j,k +1/lui,j+l,k +1/zui,j,k+l +1/1ui,j+1,k+l)/4 ( )

The effective parameters can provide a more accurate representation of the actual
parameters in the region near media interfaces by appropriately satisfying the traction
continuity condition across the interface (Zahradnik et al., 1993).

The differential operators only act on the wavefield variables, differencing of the
media coefficients is not necessary in this scheme, and the complexity of the media
has no impact on the form of the differential terms. Therefore, the scheme can handle
arbitrary media. The time updated wavefields are computed such that the velocity
field at time n+A4¢/2 is determined explicitly by using the velocity field at time n-At
and the stress field at time nAr. Therefore, the time update scheme is very
straightforward, and source implementation (stress, velocity and so on) is explicit and
can be accomplished by simply adding the source component to the wavefield.

FOURTH ORDER DIFFERENTIAL OPERATOR

In the equations above, the spatial derivatives are given by the form of

d

va = Davap‘,j,k

o (9)
where D, represents the discrete form of the differential operator d/dx acting on the
variable v,, and evaluated at the point x=iAx, y=jAy and z=kAz. With a uniform grid
spacing of h, the fourth-order differential operator can be written as (Levander, 1988)

1
vax|i,j,k = [g (vx\i+1/2,j,k - vx|i—1/2,j,k) T (vx\i+3/2,j,k —Vi3/2,jk )/ h

24 (10)

The differential operator can also be expressed as

1
Dv 9

==V e =V )= — (Vo s =V )]/ h
x U xli,j.k [8 ( x|i-1/2,j,k x|1+1/2,./,k) 24 ( x|i=3/2,j.k x|i+3/2,j.k )] (1 1)

If we name (10) as the forward difference in x direction, (11) is the backward
difference in x direction. Alternate use of forward and backward differential operators
can maintain greater accuracy than of using only one of them.

STABILITY CONDITION ANALYSIS

The stability condition will be only analyzed under the case of a homogeneous
medium. Assume that the errors of velocity and stress components (at time mA¢ and
x=ih, y=jh and z=kh) have the harmonic form, i.e. velocity components (for example)
are
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e(u)| |4
e(u,)|=|B|expli(—wmAt + k ih+k jh+k_kh)]

(12)
e(w,)| |C

where wis an angular frequency, k., k, and k. are the components of the wavenumber
k. Substituting (12) into equation (5) can lead to the equations system as (Moczo et
al., 2000),

| O AT ats o'y
Sy | w4 pE o
¢ o’& g (s )

where, v and S are P-wave and S-wave velocity, respectively, and

& =asin(3hk_ /2)+bsin(2hk_/2)

¢ =asin(3hk, /2)+bsin(2hk  /2)

n=asin(3hk_/2)+bsin(2hk_/2)
where, a=9/8 and b=1/24, and

=&+t +’
By solving equation (13), we can obtain
sin(wAt/2) = Al i
h (14)

and

sin(wAt/2) = Al [’
h (15)

From equation (14), we have At<h)}’ 2700 1f we let X takes its maximum value of
3(a+b)’, then the stability condition for P-wave should be

At < 6
73 (16)
and similarly, the stability condition for S-wave should be
At < 6h
3P (17)

Since both types of waves are generated and propagate in a media, equation (16)
should be used as the stability condition.
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GRID DISPERSION CONDITION

The maximum frequency that can be accurate by modelled is related to the
minimum of all frequency f calculated for each unit cell. A good rule is that the
wavelength should be larger than 5 times the grid size (Levander, 1988), so that

f<v.. /5h
(18)

where Viin 1S minimum wave velocity.

FREE SURFACE BOUNDARY

To represent a planar free-surface boundary in the staggered-grid finite-difference
scheme, an accurate and numerically stable formulation can be implemented by
explicitly satisfying the zero-stress condition at the free surface (e.g., Levander,
1988), i.e.

Tzz |z=0 = sz |z=0 = Tyz |z=0 = O
(19)
In order to implement the equation (19) for the discrete model, values of stress and
velocity components need to be specified at and above the free surface boundary anti-

symmetrically (e.g. Yao & Margrave, 1999). If the index for the free boundary in the
z direction k, the particular values should be set as

Tzz\iz:k = 0 Tzz|iz=k—l = _Tzz\iz=k+1
sz|iz:k—l/2 = _sz|iz:k+1/2 Tzz|iz:k—3/2 = _Tzz\iz:k+3/2 (20)
Toiz=k—1/2 = " ¥ pejizmks1/2 Tyiz=k=3/2 = " Cysliz=ks3/2

Using equations (20) along with equations (2), the finite difference equations for
the velocity component at the free surface are

Dzvz =- ﬁ (DYVZ +Dyvy) |iz=k

A+2u
Dy, ==(D,v,+DwV,)|is112 =DV, licirs 91
Dy, = —(Dzvy +Dyvz) |t/ —D,v, limto1/2 2D

Equation (21) can be solved with second-order differential operators to obtain the
velocity components in the grid row just above the free surface, given the values of v
at and below the free surface.

ABSORBING BOUNDARY CONDITION

There are a number of ways to apply absorbing boundary conditions. Radiation
conditions may be satisfied explicitly (Clayton and Engquist, 1977; Stacey, 1988), or
the solution may be tapered over a thin strip along the boundary (Cerjan et al., 1985;
Loewenthal et al., 1991). To meet radiation conditions, only two fictitious strips of
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nodes along the boundary for fourth order operators are required, whereas tapering
generally requires more strips. Tapering is the easiest to implement, is efficient, and is
used in our late simulations.

SOURCE FUNCTIONS

Three functions are commonly used as source functions and may be expressed as
follows:

Gaussian function

g(t)=exp(—oa’)

(22a)
the first derivative of Gaussian function
a(t)=-2otexp(—ot’)
(22b)
and the second derivative of Gaussian function (the Ricker wavelet),
g(t)=(4a’t’ = 2a)exp(—ct? )
(22¢)

This last function can be written as the function of the dominant frequency is fq,
ie.

g()=(0-27"ft* exp(-nf ,1*)
(22d)

SOURCE TYPES

Source waveforms such as explosive, shear, horizontal or vertical point sources
may be introduced by appropriately weighting the stresses or velocities at the source
node or nodes (Aboudi, 1971). Assuming that the point source is located at grid point
(iz,ix), three types of sources may commonly be used for different purposes of
modelling and may be implemented as follows:

Pressure source: this is used as to model a P-wave source and can be set by the
source function the stresses at the source location

Txx(ixoiyviz) = g(t) 7. (ix7 iy, iZ) = g(t)
: (23a)

S wave source: this can be implemented by the source function as the velocity
variables as
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v (ix,i,iz) = g(t) v, (ix,iy,iz) = g(1) v (ix,iy,iz) = g(?)
V. (ixaiyaiZ - 1) = _g(t) , Vy (lxaly - laiZ) = _g(t) , Vv, (lx + laiyaiz) = g(t) (23b)

Normal stress/velocity source: this can be implemented simply by acting the
source function on 7. or w, respectively, i.e.

7. (ix,iy,iz) =g(t) w,(ix,iy,iz) = g(?)
) (23¢c)

NUMERICAL EXAMPLES

Two models are used for the numerical simulation. The first model is a
homogenous media with velocity o=3000/s. The size of this model is
500mx500mx500m. The second model is a two layer model with velocities «=3000/s
and B=1732m/s at the upper layer, 0=4000/s and B=2000m/s at the lower layer. The
size of this model is 1000mx1000mx1000m. The interface is located at the depth
650m. The grid size used for the finite difference is Smx5mx5m and the time step is
0.0005s. A vertical force with a Ricker wavelet is located at the central of both
models. The wavefields propagating in both models are horizontally symmetric. The
result from the first model is shown in Figure 2. From the figure we can see that the
wavefield is well simulated. Figure 3 shows the result from the second model. When
the wave hit the interface, S-wave is generated on the both sides of the interface.
Figure 3b shows also that the tapering boundary condition works well when the wave
propagates to the bottom side of the model.

CONCLUSIONS

The Fourth-order finite difference scheme on staggered grids solving velocity-
stress wave equations is presented for simulating elastic wavefield propagation in
inhomogeneous isotropic media. Boundary conditions, source functions and source
types are discussed in relation to the practical implementations. Numerical examples
indicate that the scheme works and stable.

We plan to use this code to study the 3D elastic response of complex structures
such as those in the Alberta Foothills.
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Fig. 1. A unit cell for staggered formulation consists of the wavefield variables and media
parameters that are defined at a specific node. The model space is then made up of series of
repeated unit cells that occupy a 3D volume of space. The indices (i, j, k) represent values of
the spatial coordinates (x, y, z), respectively, and the grid spacing h is defined as the length
between the centres of two adjacent grid cells.
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Fig. 2. The result of the simulation from the first model. Left: the two cross-sections. Right:
section A from left.

Fig. 3. The result of the simulation from the second model. Left: the two cross-sections. Right:
section A from left.
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