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ABSTRACT 
In heterogenous media with velocity field v(x,z), Fourier domain wavefield  

extrapolators are typically applied recursively over depth to perform migration or 
modelling. Due to the approximation in the theory, errors accumulate through depth 
steps. In this paper a dual algorithm is formulated that employs high-accuracy, 
integral, wavefield extrapolation to compute quality control wavefields at a grid 
coarser than the imaging grid and employs algorithms of lower accuracy to compute 
the intermediate wavefields. 

PSPI AND NSPS IN ACCURATE FORM AND PRACTICAL 
IMPLEMENTATION 

In accurate form, PSPI becomes an integral over horizontal wave number kx, which 
performs wavefield extrapolation simultaneously with an inverse Fourier transform. It 
can be written as (Margrave and Ferguson 1999) 
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( )ωψ ,,x z  is the FX domain expression of the wavefield at depth z and ( )ωϕ ,0kx ,  is 
the FK domain expression of the wavefield  at depth z=0. 

Equation (1) has a complementary form, NSPS, which performs wavefield 
extrapolation simultaneously with a forward Fourier transform, 
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, (3) 

where ( )ωα ,kx x ,z,  is expressed by equation (2). 

Margrave and Ferguson (1999b) showed that the NSPS and PSPI can be naturally 
combined into a symmetric wavefield extrapolator, SNPS. A Taylor series derivation 
of PSPI, NSPS and SNPS show that SNPS has a smaller error and is more stable than 
either PSPI or NSPS alone. In practice, PSPI and NSPS are computed using a set of 
spatial windows and results in the windows are collected. PSPI can be written as 
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and NSPS can be written as 

 
( ) ( ) ( ) ( )∫∑

∞

∞−

ΩωΨωα=ωϕ dxxikxzkzk xj
j

xjx exp,0,,,,,
, (5) 

where the window jΩ  is 
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( )ωα ,, zkxj  becomes a local split-step phase-shift operator, 
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where sj(x) is the slowness in the jth window and sj,0 is reference slowness in the jth 

window.   
A more precise approach is to compute the integrals (1) and (3) directly at each 

imaging step.  Equation (1) can be written in matrix form 
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and equation (3) can be written as 
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Computation of either equation (8) or (9) is required at every imaging step and it 
provides higher accuracy than equations (4) and (5). However the computation effort  
is generally not acceptable in real industrial imaging projects.  

LARGE-STEP FORMULAE FOR PSPI AND NSPS 
In homogeneous media, the phase shift can be split into a static phase-shift term 

and a focusing term 
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where staticΦ  can be applied in FX domain, and the focusing term has to be applied in 
the FK domain.  

For v(x, z) media, the static phase shift through multiple steps can be accumulated 
and the average velocity can be used for one-step extrapolation 
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The focusing term can also be accumulated, 
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Expanding the square-root term with power series leads to, 
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The vmean is the mean velocity over depth, which is defined as  
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The infinite series of equation (13) can then be approximated by 

 ( )
( )22

21 1 .x mean
focus

mean

k v x,zωzΦ'
v x,z ω

   = − −      (14) 

Expanding the equation (14) with power series and then subtracting equation (12) 
leads to the higher-order error terms 
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  (15) 
which generally can be ignored.  

Note the one-step focusing term, equation (14), is dependent on x. The 
nonstationary wavefield extrapolation theory can be applied solely to the focusing 
term after a FX domain static phase-shift with the average velocity.  Equations (1) 
and (3) now become 
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where ( )ωα ,kx' x ,z,  is the nonstationary focusing phase-shift term 
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and Fx and Fx
-1 denote forward and inverse Fourier transforms. 
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Similar to the natural combination of the recursive NSPS and PSPI (Ferguson and 
Margrave, 1999b), (16) and (17) can also be combined naturally to form a one-step 
symmetric wavefield extrapolator. 

Equations (16) and (17) require the same computation efforts as the recursive PSPI 
and NSPS integral as described before. However they allow a much larger depth step.  
There is a trade-off between the vertical extrapolation step size and the horizontal 
velocity variation. If the velocity variation is strong, the extrapolation step has to be 
reduced to keep the higher order error term ignorable. We shall demonstrate the 
accuracy of one-step PSPI integral and this trade-off relationship with two zero-offset 
extrapolation examples using velocities from depths 0-200 m and 1200-1400 m of the 
Marmousi model. Figure 1 highlights the two velocity zones. Forward modelling is 
done by recursive application of the PSPI integral (equation (1)), which should 
produce very accurate synthetic data. For each velocity field, 11 impulses were 
forward extrapolated recursively through 20, 30 and 40 layers at a 4m step size. The 
quality of the inverse extrapolation with the one-step PSPI integral of the three 
synthetic datasets indicates how robust the algorithm is when different horizontal 
velocity variations are present.  

 

 

Figure 1. Two velocity zones with different horizontal velocity variation are chosen to test the 
one-step  PSPI integral wavefield extrapolator. 
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 Figure 2. 40-step mean velocity and average velocity variation for velocity zone 1 (top) and 2 
(top). The solid black line is average velocity and the gray line is the mean velocity. 

Figure 2 shows the 40-step average and mean velocities for the two velocity zones. 
Note the maximum percentage average velocity variation is about 20% for velocity 
zone 1 while about 50% for velocity zone 2. We should expect the maximum 
allowable depth step in velocity zone 2 to be less than that in velocity zone 1.  
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(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 3. Extrapolation test in velocity zone 1. (a) (b) and (c) are forward modeling by 
recursive PSPI integral though 20, 30 and 40 layers. The step size is 4 m. (d), (e) and (f) are 
inverse extrapolation of (a), (b) and (c) using the one-step algorithm.  
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(d) 
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(e) 
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Figure 4. Extrapolation test in velocity zone 2. (a) (b) and (c) are forward modelling by 
recursive PSPI integral though 20, 30 and 40 layers. The step size is 4 m. (d), (e) and (f) are 
inverse extrapolations of (a), (b) and (c) using the one-step algorithm with a step size of 40 
m. 
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Figure 3 shows the extrapolation test in the velocity zone 1. In all three cases, the 
impulses are very well recovered and doubling the step size of inverse extrapolation 
from 80 m to 160 m does not have much negative impact on the image quality even at 
sharp velocity boundaries. The quality of the image of the 40-step case suggests that 
even larger extrapolation step can be used without losing accuracy when the 
horizontal velocity variation is not quite severe. 

 
(a) 

 
(b) 

Figure 5. Inverse extrapolation of Figure 3d and Figure 4d with recursive PSPI integral. The 
step size is 4 m. 

Figure 4 shows the extrapolation test in the velocity zone 2. Figure 5 shows the 
results of inverse extrapolation of Figure 3d and Figure 4d with recursive PSPI 
integral extrapolator. Note the inverse extrapolation with large-step PSPI integral 
extrapolator in both the shallow and deep part of the model produce very similar 
results to the 4-m PSPI integral extrapolator.  

 

(a) (b) 

Figure 6. Zero-offset wavefields at 760 m of Marmousi model. (a) was extrapolated by large-
step PSPI integral extrapolator of 40 m step size and (b)  was extrapolated by recursive PSPI 
integral of  4 m step size.  
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Figure 6 shows a comparison of 11 impulse responses after extrapolation through 
the upper 760 m of the Marmousi model. The computation of Figure 6a is ten times 
faster than that of Figure 6b. 

DUAL EXTRAPOLATION ALGORITHM 
For traditional, recursive, Fourier-domain imaging algorithms, the error caused by 

approximation of the extrapolator accumulates in every imaging step.  The idea of the 
dual algorithm is to provide relatively accurate reference wavefields at a coarser 
depth interval and compute the intermediate images from these reference wavefields 
with a faster algorithm such as Gazdag�s PSPI (Gazdag and Sguazzero, 1984) or the 
split-step Fourier algorithm (Stoffa et. al., 1990). When the distance between 
reference wavefields is not large, the intermediate image can be computed by 
interpolation of the reference wavefields after a static phase-shift. There are many 
interpolation possibilities. The example shown in this paper is the simplest 
combination of one-step PSPI integral extrapolator for computing reference 
wavefields and linear interpolation of the upper and lower reference wavefields after 
static phase-shift. 

Consider two monofrequency reference wavefields at z1 and z2, ( )ωψ ,,x 1z , 
( )ωψ ,,x 2z , which are computed by the large-step PSPI integral extrapolator 

described above, an intermediate wavefield between z1 and z2, ( )ωψ ,,x z , can be 
computed by either forward extrapolation from the wavefield at z1 or by inverse 
extrapolation from the wavefield at z2.  However, computation of the focusing term is 
time consuming. If only the static phase-shift is applied instead of full extrapolation, 
the two resulting wavefields 
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are under- and over-focused approximations to the correct wavefield ( )ωψ ,,x z , 
where vave1 and vave2 are average velocities from z1 to z and z to z2. A linear 
interpolation between ( )ωψ ,,x'

1 z  and ( )ωψ ,,x'
2 z  roughly cancel the focusing error if 

vave1 and vave2 are close. 
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(a) 

 
(b) 

Figure. 7 Zero-offset wavefield extrapolation of 11 impulses to (a) 560 m and (b) 600 m of the 
Marmousi model.  

Figure 7 and Figure 8 show the zero-offset forward extrapolation of 11 impulses 
starting at 0.25s through the shallow part of the Marmousi model with the dual 
algorithm. Two reference wavefields at 560 m and 600 m were computed with the 
large-step PSPI integral extrapolator with 40-m step size (Figure 7). The intermediate 
wavefields at 564 m, 572 m, 580 m, 588 m and 596 m were computed with equation 
(21).  

The quality of intermediate image degrades slightly as the wavefield approaches 
the middle of the reference wavefields.  Inverse extrapolation of Figure 8a-e with 4-m 
recursive PSPI integral extrapolator are shown in Figure 9.  There is little difference 
between them, which indicates that a larger depth interval between the reference 
wavefields could be used without significant loss of accuracy. 

FUTURE WORK 
By using the average velocity for the static phase-shift and the mean velocity for 

the focusing phase-shift, a large depth step can be used to produce images with 
quality comparable to the recursive PSPI integral with small extrapolation steps, 
while computing speed is tremendously improved. Instead of PSPI integral, NSPS 
integral will be tested in the same way and it should produce similar results. From 
previous research on symmetric nonstationary wavefield extrapolation (Margrave and 
Ferguson, 1999), an even larger extrapolation step can be also used without 
significant loss of accuracy.  

There is a relationship between the allowable focusing phase error and the largest 
step size that can be used in computing the reference wavefields. This question needs 
to be addressed in future research work. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 8. Intermediate wavefields at (a) 564 m, (b) 572 m, (c) 580 m, (d) 588 m and (e) 596 m 
were computed by linear interpolation between the reference wavefields at 560 m and 600 m. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 9. Inverse extrapolation of the intermediate wavefields at (a) 564 m, (b) 572 m, (c) 580 
m, (d) 588 m and (e) 596 m with the 4-m step recursive PSPI integral operator.  
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