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ABSTRACT 
The nonstationary phase-shift extrapolator provides a highly accurate wavefield 

extrapolator in laterally inhomogeneous media. However, because the operator 
depends on both the lateral spatial variable and its wavenumber, the transform 
between space and wavenumber cannot be implemented with the fast Fourier 
transform technique and therefore, the computational effort is greater than that of the 
stationary phase shift method. In this paper, a method is developed that applies the 
windowed Fourier transform to the Helmholtz equation to obtain a local wavefield 
expression, which leads to the windowed version of nonstationary phase-shift. 
Numerical results show that the computational efficiency is improved with little loss 
of accuracy. 

INTRODUCTION 
Implementation of wavefield extrapolation in the frequency-wavenumber domain 

has many advantages, e.g., the spatial derivatives are calculated accurately with the 
Fourier transform (Orsag, 1972) and ray-tracing is not necessary (Goran and 
Richards, 1991). Wavefield extrapolation is mostly based on the one-way wave 
equation, which comes from the factorization of Helmholtz equation. The exact 
factoring of the Helmoholtz equation for the apparently simple case of a 
homogeneous medium (constant velocity), results in a nonlocal one-way wave 
equation. The resulting phase-shift method (Gazdag, 1978) is an exact solution for the 
extrapolated one-way wavefield. The phase-shift method is attractive because the 
computation is very efficient due to its use of the fast Fourier transform (FFT) for all 
integrations. However, the requirement of constant velocity limits this method 
because seismic imaging must often cope with laterally inhomogeneities.  

 Recently, Margrave and Ferguson (1999) presented a nonstationary phase-shift 
method for wavefield extrapolation based on pseudo-differential operator theory. 
With this operator, the Helmholtz wave equation can be approximately factorized into 
a one-way wave equation with high accuracy for the case of velocity varying 
laterally. The operator can be applied in either the frequency-wavenumber domain or 
the frequency-space domain. There are two forms of nonstationary phase shift 
algorithms, i.e. the combination extrapolator (PSPI in the nonstationary limit) and the 
convolution extrapolator (nonstationary phase shift, NSPS). Margrave and Ferguson 
(1998) recognize that PSPI and NSPS are the transpose of one another in the space-
frequency domain and can be combined to produce forms that are symmetric. 
Symmetry of explicit extrapolators in space domain is required by reciprocity 
considerations (Wapenaar and Grimbergen, 1996). 
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Unlike the stationary operator that is a function either of the position vector (space 
domain) or of wavenumber (wavenumber domain), the nonstationary operator is the 
function of both variables. In this case, the FFT cannot be applied to the transform 
between the space and wavenumber domain so extra computational effort is required 
for nonstationary phase shift extrapolation. 

When the variation of velocity is weak, several less accurate methods can be 
applied with satisfactory results. For example, in split-step-Fourier method (Stoffa, et 
al., 1990) and phase-screen method (Wu, 1998), the operator can be approximately 
split into two independent operators and each of them is only a function of spatial 
variable or wavenumber, respectively. Therefore, the fast Fourier transform can be 
utilized to obtain computational efficiency. However, this method fails in the case of 
strong velocity variation (Stoffa, 1990). 

In this paper, a windowed Fourier transform technique is applied to the Helmohltz 
wave equation. Applying the split-step technique to the solutions of nonstationary 
phase-shift leads to the three split-step Fourier schemes. The advantage of this 
windowed version of nonstationary phase shift is that the FFT can be applied to 
obtain the computational efficiency and accuracy. 

THE WINDOWED FOURIER TRANSFORM 

Let W(t) be a function that vanishes outside the interval �L ≤t ≤ 0, i.e., such that 
W(t)⊂[-L,0]. W(t) will be weight function, or window, which will be used to localize 
the function f(t) in time. For a specific time t, define 

 
)()()( tftWtf χχ −=

  (1) 

then, fχ(t)⊂[χ-L, χ], and we think of fχ (t) as a localized version of f(t) that depends 
only on the values of f(t) for χ-L≤ u ≤χ. If W is continuous, then fχ(t) with t≈χ-L and 
t≈χ are small. This means that the above localization is smooth rather than abrupt. 
The windowed Fourier transform of f, or the Fourier transform of fχ is  (Kaiser, 1994, 
A friendly guide to wavelets, Birkhauser) 

 
dtetftWff ti∫ −−== ω

χ χωωχ )()()(~),(~
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In equation (1), the output of the Fourier transform )(~ ωχf  depends on f(t) only for 
the values inside the window and gives little weight to the values of  f(t) near the 
endpoints. The windowed Fourier transform is a real-time replacement for the Fourier 
transform, giving the dynamical (time-varying) frequency distribution of f(t), which 
allows us to analyze the spectrum of f in a local time window. In the limiting case 
when W≡1 the windowed Fourier transform reduces to the ordinary Fourier 
transform.  



Windowed nonstationary phase shift 

 CREWES Research Report � Volume 12 (2000)  

The corresponding inverse Fourier transform, i.e. to reconstruct f from f~  , can be 
performed by applying the inverse Fourier transform, with respect to the variable ω, 
to equation (2), we obtain 

 
ωωωχ χ dtiftftW )exp()(~)()( ∫=−

 . (3) 

In equation (3) we cannot recover f(t) by dividing by W(t-χ) since this function may 
vanish. Instead, we multiply equation (2) by W*(t-χ) and integrate over χ, i.e. 

 
),(~)()exp()(|)(| *2 χωχωωχχχ ftWtidddtftW −=− ∫ ∫∫ . (4) 

The left-hand side is simply equal to 
)(|||| 2 tfW

, hence 
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where * denotes the complex transpose and C=||W||2.  

 

LOCAL FOURIER TRANSFORMED HELMHOLTZ WAVE EQUATION 
AND THE SOLUTIONS 

The wave equation in the temporal frequency domain is the Helmholtz equation 
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where, ψ(x,z;ω) is the wavefield in two spatial coordinates, ω is the angular 
frequency, and s(x) is the slowness that depends on the horizontal coordinate x. If the 
local spectrum is defined as 
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then the equation (6) can be written as 
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Following the derivation given by Hildebrand (1987), equation (8) can be 

expressed as 
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where 
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where s0
 is the reference slowness and ∆s2=(s2-s0

2), and 

 
)ln(W

dx
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. (10b) 

Equation (9) is very similar to the normal Helmholtz equation if the variable χ is 
dropped. Based on the nonstationary phase-shift, the approximate solution for 
wavefield extrapolation can be written as 

 ∫ ϕ∆α=ψ xxx dk)xikexp()z,x,k(
 (11) 

and 

  ∫ −ψ∆α=ϕ dx)xikexp()z,x,k( xx
, (12) 

which are the PSPI and NSPS versions, respectively. In the equations above, α is the 
nonstationary extrapolator defined as 

 
z)ksiexp()z,x,k( 2

x
22

x ∆−ω±=∆α
 (13) 

The extrapolator α can be considered as the generalized phase shift when the 
wavefield is propagating up and down along the z-axis (Wenzel, 1991). By 
combining equations (11) and (12), a symmetric form of solution can be obtained 
(Margrave and Ferguson, 1999) 

[ ]  dx))dkx-(xexp(-k)z,x,k()z,x,k()z,x(
2
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.  (14) 
So far, no improvement has been made in the computational efficiency, because 

the extrapolator is still a function of both wavenumber and x. If we write 
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and choose a  proper window so that the slowness variation within the window is 
small. Then the square root can be expressed as 
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where 
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Moreover, if the depth-step for the extrapolation is sufficiently small, the energy of 
the wavefield is locally concentrated. Therefore, the energy propagation is then 
mostly vertical and the second term on the right of equation (15) can be approximated 

as 
0

2

2s
s∆ω . Then, the extrapolator in equation (13) can be approximated as 
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where 
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Substituting equation (17) into (11) and (12) and using the technique of split-step 
(Hardin and Tappert, 1973) the windowed version solution of nonstationary phase-
shift can be written as 
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and 
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Equations (19) and  (20) are equivalent to the split-step Fourier method except that 
the solutions are functions of the window parameter χ. The computational cost is 
reduced because FFT can now be used. This is also the method implemented in 
Ferguson and Margrave (1999) when W is a boxcar function and within the boxcar 
the velocity variation can be ignored. 

The windowed form corresponding to equations (19) and (20) can be written as 
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and 
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Combing (21) and (22) with a half step in ∆z, we can obtain 
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which corresponds to the symmetric solution of nonstationary phase-shift described 
by equation (14). 

 

RECONSTRUCTION OF THE WAVEFIELD 
The solutions given by equations (21-23) are windowed versions that depend on 

the local spatial variable. Therefore, they must be transformed back to the global 
spatial variable to reconstruct the wavefield. The reconstruction can be implemented 
via equation (5). For example, if the window is chosen as a Gaussian function 
(Kaiser, 1994), 

 
)exp()()( 24/1 axaxW π

π
−=

, (24) 

where a gives the width of the window. When a=1, it reduces to the Gabor transform. 
The reconstruction can be obtained by, 

 ∫ ∆+−=∆+ ∗ χωχψχ
π
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2
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. (25) 

 
In practice, when velocity variation is not strong, a simpler window function may be 
designed as 

 
1=− )( χxW

, 
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 (26a) 
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Equation (26) designs a tapered boxcar function and η is a constant that controls the 
taper length. The reconstruction can be performed by (Hildebrand, 1987) 
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where C(x-χ)=1 when |x-χ|<a and otherwise is zeros. 

After wavefield reconstruction for a single window, only the portion with width 
�a� at the centre of the window is used. The final extrapolated wavefield at the depth 
z+∆z can then be obtained by combining all of the windowed solution. When the 
window function is taken as a δ-function, then the solution given by original 
nonstationary phase-shift is obtained. 
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NUMERICAL EXAMPLES 
The first model used for simulation is shown in figure 1. The model is composed 

of two blocks. The velocity on the left block is 1500 m/s and on the right it is 2500 
m/s. One point source is located close to the velocity boundary on the left. Two 
windows are used in the simulation.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Velocity model for Model I. 

After extrapolation with z=200 m (20 steps of  ∆z=10m) the result is shown in Figure 
2a. The traveltime of the first arrival calculated by solving the Eikonal equation with 
finite-difference method (Vidale, 1988) matches our result very well. Figure 2b 
shows the result when the wavefield is extrapolated back (20 steps of  ∆z=-10m) to 
z=0. The original spike pulse is well recovered, which means that the method is 
consistent for both forward and backward extrapolations. 

 
 
 
 
 
 
 
 
 
 
Figure 2. The result of (a), the wavefield extrapolated with z=200 m and (b), with z=-200 m 
with the data from experience (a). 

These results are very similar to the results produced by nonstationary phase-shift 
(Yao and Margrave, 1999), because essentially both methods are the same for such a 
model. 

The second model is shown in Figure 3 for the post stack migration test. The 
exploding reflector shown in Figure 3a is used for modeling the wave propagation in 
the velocity model shown in Figure 3b. The synthetic data (Figure 4) was generated 

Distance (m) 

1500 m/s 2500 m/s

0 1280 2560 

(a) (b)
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by the Fourth-order staggered grid finite-difference method. In Figure 4, the data in 
the left part contains coherent noise (head waves off the vertical interface) because 
the velocity there is much lower that that of the right part. There is also more 
dispersion on the left. However, the existence of these noises can also be used to test 
the flexibility of the method. 

 
 
 
 
 
 
 
 
 

Fig. 3. Model II. (a) exploding reflector and (b) velocity model. 

The result shown in Figure 5a is produced by the windowed nonstationary phase-
shift with two windows that covers left and right part, respectively. The image is 
produced by each 20m extrapolating step. Compared with the more accurate result 
(Figure 5b) produced by the eigenfunction decomposition method (Yao and 
Margrave, 1999) shows that the simplified windowed nonstationary extrapolator 
works very well. 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Synthetic data from Model II 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Results from (a) windowed method and (b) eigenfunction decomposition method. 
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With a very similar model (except that there are no linear velocity variations), Stoffa 
et al. tested for the split-step Fourier method with the result in Figure 6. 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6. Result produced by Stoffa et al. (1990). 

 

The final test is on the data from the Marmousi model (Figure 7) for prestack 
migration (Bourgeois et al., 1991). The windows generated by the criteria of velocity 
variations are less than 10% relatively. The result is shown in Figure 8. 

 

 

 
 

Figure 7. Marmousi model. 
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Figure 8. Migration result from Marmousi data. 

 
Comparing the migrated result with the original velocity mode shows that all of the 
major seismic markers are present in the migrated image. 

CONCLUSIONS 
The windowed nonstationary phase-shift method presented in this paper can 

handle wavefield extrapolation in strong laterally variant velocity media. It speeds up 
the original nonstationary phase-shift but retains accuracy. When the window is 
chosen as the unit function, the method comes back to the original nonstationary 
phase-shift method. Numerical results show that the method works well for both 
wavefield extrapolation and migration. 
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