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Fluid-property discrimination with AVO: A Biot-Gassmann 
perspective 

Brian H. Russell, Ken Hedlin1, Fred J. Hilterman2, and Laurence R. Lines 

ABSTRACT 
This paper draws together basic rock physics, AVO, and seismic amplitude 

inversion to discuss how fluid discrimination can be performed using pre-stack 
seismic data. From both Biot and Gassmann theories for porous, fluid-saturated rocks, 
a general formula is first derived for fluid-property discrimination given that both the 
P and S impedances are available. In essence, an AVO inversion is transformed into 
the elastic properties of the pore space. This formula provides a more sensitive 
discriminator of the pore-fluid saturant than the acoustic impedance and is especially 
applicable in hard-rock environments. The formulation can be expressed with either 
the Lamé constants and density, or the bulk and shear moduli and density. Numerical 
and well-log examples illustrate the applicability of this approach. The combination 
of an AVO inversion and the parameters of the formula are then discussed to show 
how this technique can be implemented using pre-stack seismic data. Finally, a 
shallow gas-sand example from Alberta and a well-log example from Eastern Canada 
are shown to illustrate the techniques. 

INTRODUCTION 
Recently, there has been a lot of interest in the extraction of information about the 

fluid content of the reservoir using Amplitude Variations with Offset Analysis, or 
AVO. Goodway et al (1997) proposed the lambda-mu-rho technique, which has met 
with much success. Hedlin (2000) proposed the pore-modulus method, which was 
based on work by Murphy et al (1993). Most recently, Hilterman (2001 SEG 
Distinguished Instructor Short Course) introduced the concept of the fluid 
discriminant. 

In this paper we will examine all of these concepts in the context of the Biot-
Gassmann theory. This will involve looking at the differences in formulation between 
the Biot and Gassmann theories of porous media (Kreif et al, 1990). By doing this, it 
will become obvious that the important distinction that we need to make when 
extracting fluid-property information is between the dry and saturated components of 
the reservoir, and not the constants used to describe the reservoir (i.e. Lamé constants 
versus bulk and shear moduli). We can then relate the various dry rock elastic 
constant ratios to the techniques summarized above, and provide a physical 
framework that ties together these apparently disparate methods. 
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BIOT-GASSMANN THEORY OF VELOCITY IN POROUS ROCKS 
The basic equations for P and S-wave velocity in isotropic, non-porous media are 

well known and can be written as 

 ρ
µ

ρ
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=+=

K
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 ρ
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where ρ is the density, λ is the 1st Lamé parameter, µ is the 2nd Lamé parameter or 
shear modulus, and K is the bulk modulus, or the inverse of compressibility. Since the 
P-wave velocity in equation (1) has been written in two separate ways, it is obvious 
that the relationship between K and λ, which can be written as 

 
µλ 3

2=−K
, (3) 

is exact. When we turn our attention to porous, saturated rocks, the situation becomes 
more complicated. The problem was first addressed by Biot (1941) and then 
Gassmann (1951) using apparently different approaches but, as shown by Krief et al 
(1990), these two approaches lead to the same results. Although there have been 
many theories proposed since Biot and Gassmann, their method has remained the 
most robust and frequently implemented way of expressing the P- and S-wave 
velocities of porous rocks in terms of elastic constants.  

To understand the Biot-Gassmann terminology, we refer to Figure 1, which shows 
that a cube of porous rock can be characterized by four components: the rock mineral, 
the pore/fluid system, the dry-rock frame, or skeleton, and the saturated rock itself. 

 
FIG. 1. In Biot-Gassmann theory, a cube of rock is characterized by four components: the 
rock matrix, the pore/fluid system, the dry rock frame, and the saturated frame. 
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The density effects of the saturated rock can be computed quite accurately with the 
volume average equation as 

 
( ) ( )φρφρφρρ whcwwmsat SS −++−= 11

, (4) 

where ρsat is the total density value, ρm is the density of the rock matrix, ρw is the 
density of water (brine), ρhc is the density of the hydrocarbons, φ is the porosity of the 
rock, and Sw is the water saturation. 

A similar equation, which was an extension of Wyllie’s empirical time-average 
equation, was proposed for velocity where transit-time, or inverse velocity, is 
substituted for density in equation (4), but this formulation was shown (Domenico, 
1974) not to hold for gas sands. Domenico showed in the same paper that the Biot-
Gassmann theory provides a much better fit for gas sands. Thus, we will now present 
a short review of this theory. However, instead of starting with Gassmann's work, as 
is usually done, we will start with the work of Biot (1941). Biot used the Lamé 
parameters and showed that (Krief et al, 1990) 

 
Mdrysat

2βλλ +=
, (5) 

where λsat is the 1st Lamé parameter for the saturated rock, λdry is the 1st Lamé 
parameter for the dry frame, β is the Biot coefficient, or the ratio of the volume 
change in the fluid to the volume change in the formation when hydraulic pressure is 
constant, and M is the modulus, or the pressure needed to force water into the 
formation without changing the volume. (Note that this modulus is different than the 
usual definition, in which the modulus represents the numerator under the square-root 
sign in the velocity equations.)  

On the other hand, Gassmann started with the bulk and shear moduli, and derived 
the following relationship (Krief et al, 1990): 

 
MKK drysat

2β+=
, (6) 

where Ksat is the bulk modulus of the saturated rock, Kdry is the bulk modulus of the 
dry rock, and β and M are the same as in equation (5). By equating equations (5) and 
(6), and using equation (3), the following result can be derived: 

 
drysat µµ =

. (7) 
That is, the shear modulus is unaffected by the pore fluid. This theoretical result 

has a strong intuitive basis, since we know that fluids do not support shears, only 
compressions. Returning to equation (6), Gassmann further showed that 

 m
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K
K
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, (8) 

and 
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 flm KKM
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, (9) 

where Km is the bulk modulus of the matrix material and Kfl is the bulk modulus of 
the fluid. If equations (8) and (9) are substituted into equation (6) the result is the 
expression often seen in rock-physics textbooks (e.g. Mavko et al 1998). However, 
we have chosen to retain the use of the term β2M for the difference between the dry 
and saturated cases to emphasize its independence from the first term. (Note that 
Murphy et al (1993) call this term KP, or pore space modulus). Using β2M, we can 
rewrite the equation for P-wave velocity (equation 1) in the saturated case as 
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or, more succinctly, as 

 sat
P

fsV
ρ
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, (11) 

where f is a fluid/porosity term equal to β2M, and s is a dry-skeleton term which can 
be written either as µ3

4+dryK  or µλ 2+dry . Note that in equations (10) and (11) we 
have assumed that drysat µµµ == . 

EXTRACTING THE FLUID TERM 
Since we will be applying this method to seismic data, a practical limitation that 

will be discussed later is that we can estimate only the P and S-wave impedances, ZP 
and ZS, rather than velocities VP and VS, where 

 
( )sfVZ PP +== ρρ

, (12) 
and 

 
ρµρ == SS VZ

. (13) 
We will discuss the actual computation of the impedances in a later section. First, 

let's do a little more mathematics. To remove the square roots in the above equations, 
we need to square the impedances, to get 

 
( )sfZ P += ρ2

, (14) 
and 
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ρµ=2

SZ
. (15) 

To extract the fluid component ρf, we therefore need to find a constant, c, which, 
when multiplied by 2

SZ  and subtracted from 2
PZ , will produce the desired result. 

Mathematically, this can be written as 

 
( )µρρ csfcZZf SP −+=−= 22

. (16) 

In other words, we need to find a value of c such that the product of c and µ is 
equal to the dry skeleton term. By inspection from equation (10), this can be written 
in one of three ways: 
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But how do we actually get an estimate of c?  There are several approaches. The 
first is to estimate the dry-rock Poisson's ratio, σdry, noting that this is given by: 
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Generally, the accepted value of σdry is in the order of 0.1, which corresponds to a 
VP/VS ratio of 1.5, or a c value of 2.25. 

A second approach is to perform laboratory measurements. Murphy et al (1993) 
measured the Kdry/µ ratio for clean quartz sandstones over a range of porosities and 
found that this value was, on average, equal to 0.9. This corresponds to a c value of 
2.233. If the Kdry/µ value is rounded to 1.0, this implies a σdry of 0.125, and a 
corresponding c value of 2.333. 

Thus, there are a range of values of c that depend on the particular reservoir being 
studied. Table 1 shows a range of c values and the range of respective elastic 
constants. The value of c in this table ranges from a high of 3, which implies that 
λdry/µ is equal to 1, to a low of 1 1/3, which implies that Kdry/µ is equal to 0. (This 
also implies that the material has infinite compressibility.) This last value may come 
as a shock to many readers, especially when it is noted that the values of σdry and 
λdry/µ are negative! However, it was suggested by Leon Thomsen (personal 
communication) that materials with negative Poisson's ratios do exist, so we should 
include this value as an end member. 
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3.000 1.732 0.325 1.667 1.000 

2.500 1.581 0.167 1.167 0.500 

2.333 1.528 0.125 1.000 0.333 

2.250 1.500 0.100 0.917 0.250 

2.233 1.494 0.095 0.900 0.233 

2.000 1.414 0.000 0.667 0.000 

1.333 1.155 -1.000 0.000 -0.667 
 

Table 1: A table of values for c, ranging from 3 to 1 1/3 showing the equivalent values for 
various elastic constant ratios. 

Using the values of c given in Table 1, let's return to the three references from the 
introduction (those of Goodway et al (1997), Hedlin (2000), and Hilterman (2001)) 
and interpret their results. Goodway et al attribute all of the fluid effect to the λ term 
in equation (1), and thus derive their λρ value as 

 
22 2 SP ZZ −=λρ
. (19) 

Note that this means that c is equal to 2, and implies a dry rock Poisson's ratio of 
zero. 

Hedlin (2000) incorporated the experimental results of Murphy et al, to arrive at 
the Kdry/µ ratio of 0.9 and a c value of 2.233. Hedlin calls this the KP-µ method. 
Finally, Hilterman (2001, Figure 6.A.6) assumes that Kdry/µ is equal to 1.0, which 
implies a c value of 2.333.  

So, is there a correct value for c? Let's try and answer this question by looking at 
numerical well-log and seismic-data examples. 

NUMERICAL EXAMPLE 
As a numerical example of the concepts discussed in the last section, let’s examine 

the Class 1, 2, and 3 sand models given in Figure 4.B.2 of Hilterman (2001). These 
models were derived from Gulf of Mexico trend curves where the wet-sand S-wave 
velocities were estimated with the Greenberg-Castagna technique and the fluid 
properties were derived with the Batzle-Wang approach. 

We have mentioned that both the P and S-wave impedances are assumed to be 
available for discrimination of the pore-fluid saturant. In addition, we have proposed 
the additional attributes of ρs and ρf for discrimination. These potential 
discriminators are listed in Table 2 for Class 1, 2, and 3 AVO environments. For 
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Class 3, which is a bright-spot environment, the difference in the P-wave acoustic 
impedance between a wet sand and a gas sand is significant enough to discriminate 
the pore fluids. However, in the Class 1 environment, the P-wave acoustic 
impedances for a wet sand and gas sand have similar values. Thus, differentiation of 
the gas-saturated sand from wet sand would be difficult with P-wave acoustic 
impedance. However, the ρf attribute will differentiate the two different pore 
saturants in all three sand models. The c values that are listed in the last column of 
Table 2 are highly dependent on the VP/VS transform. Thus, besides being in an 
acceptable range, conclusions based on the proper selection of the c value should be 
dependent on locally measured logs. This is accomplished in the well-log example 
given in the next section. 

Class 3 AVO 

 P-Wave 
(km/s) 

S-Wave 
(km/s) 

Density 
(g/cc) AI(P) AI(S) ρs ρf c 

Wet Sand 2.134 0.860 2.110 4.502 1.814 7.782 12.485 2.366 

Gas Sand 1.543 0.901 1.880 2.900 1.694 6.934 1.476 2.366 

Class 2 AVO 

 P-Wave 
(km/s) 

S-Wave 
(km/s) 

Density 
(g/cc) AI(P) AI(S) ρs ρf c 

Wet Sand 3.048 1.595 2.230 6.797 3.557 34.150 12.050 2.699 

Gas Sand 2.781 1.665 2.080 5.785 3.463 31.853 1.615 2.699 

Class 1 AVO 

 P-Wave 
(km/s) 

S-Wave 
(km/s) 

Density 
(g/cc) AI(P) AI(S) ρs ρf c 

Wet Sand 4.115 2.453 2.320 9.546 5.691 82.826 8.309 2.557 

Gas Sand 4.050 2.526 2.210 8.951 5.583 78.899 1.221 2.557 
 

Table 2. The gas and wet sand AVO examples from Figure 4.B.2 of Hilterman (2001) for 
several values of c. 

WELL LOG EXAMPLE 
Our well-log example comes from the Whiterose area of offshore eastern Canada. 

Figure. 2 shows the VS, VP, density and porosity logs over the producing zone, 
overlain by a Cretaceous shale. There is 85m of gas sand, 97m of oil sand, and 95m 
of wet sand. These well-log curves were converted to the equivalent ρf and ρs curves 
and crossplotted. 
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FIG. 2. The Vs, VP, Density, and porosity logs over the producing zone in the Whiterose L-08 
well. 

Figure 3(a) through (d) show crossplots of the ρs versus ρf for values of c equal to 
1.333, 2, 2.333, and 2.5, respectively. Each lithology and pore-fluid saturant is 
indicated by a different symbol. From our previous discussion, we wish to find the c 
value that produces the best ρf separation between the gas and non gas-saturated 
zones. The end members of 1.333 and 2.5 were rejected as choices for c, the former 
because the separation would be a sloping line, and the latter because the gas zones 
have negative ρf. When choosing between the other two c values, notice that the ρf 
separation is almost the same. However, the better choice would appear to be 2.333 
since the points with a higher ρs value show better separation. Also, for the c value of 
2.333, the cloud of gas points is closer to the zero value on the ρf axis. However, a 
value of 2.0, which corresponds to the lambda-mu-rho method of Goodway et al 
(1997), would also give a good separation of the gas points. Finally, we note that the 
crossplot for a c value equal to 2.233 (which comes from Murphy et al and Hedlin) 
was not shown since it produced a result that was very close to the results produced 
with a c value of 2.333. 
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FIG. 3(a). A crossplot of ρf vs ρs for the Whiterose L-03 productive zone, where c=1.333. 

 

rho*f vs rho*s for c = 2
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FIG. 3(b). A crossplot of ρf vs ρs for the Whiterose L-03 productive zone, where c=2.0. 
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rho*f vs rho*s for c = 2.333
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FIG. 3(c). A crossplot of ρf vs ρs for the Whiterose L-03 productive zone, where c=2.333. 

 

rho*f vs rho*s for c = 2.5
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FIG 3(d). A crossplot of ρf vs ρs for the Whiterose L-03 productive zone, where c=2.5. 
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A SEISMIC EXAMPLE 
Now that we have looked at the fundamentals of Biot-Gassmann theory, and 

numerical and well-log examples, let’s see how we can extract the fluid term using 
the AVO method. Fatti et al (1994) showed how a weighted stack could be used to 
extract separate estimates of the zero-offset P-wave reflectivity, RP0, and S-wave 
reflectivity, RS0, from the AVO response of prestack P-wave data. Their method is 
very powerful because it allows one to introduce a time-varying VP/VS ratio that is 
based on a VP/VS transform and the measured seismic P-wave velocity function. 
However, it can also be shown that, if we use the first two terms of the linearized 
Aki-Richards equation, or 

 
( ) θθ 2sinBAR +=

, (20) 

where R(θ) is the reflection amplitude as a function of angle θ, A is the intercept, and 
B is the gradient, and assume that VP/VS is equal to 2.0, then 

 
ARP =0

, (21) 
and 

 20
BARS

−=
. (22) 

These reflectivity estimates can then be inverted using a standard inversion 
technique to provide estimates of P and S-wave impedance, ZP and ZS. Figures 4 and 
5 show the P- and S-wave impedance inversions for a shallow clastic gas-sand in 
Alberta. 

 

 
 
FIG. 4. The P-wave impedance, ZP, found by inverting the RS estimate of a shallow gas sand 
in Alberta. 
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FIG. 5. The S-wave impedance, ZS, found by inverting the RS estimate of a shallow gas sand 
in Alberta. 

Horizon 2 in both figures is the top of the gas sand. Notice that the P-wave 
impedance in Figure 4 indicates that the gas sand shows a drop in P-impedance with 
respect to the encasing shale. However the S-impedance in FIG. 5 does not show the 
same decrease as we move into the gas sand. This can be physically understood when 
we recall that S-wave velocity is insensitive to the fluid, whereas P-wave velocity 
shows a sudden decrease when gas is introduced into the reservoir. Figures 6 and 7 
show the fluid and skeleton terms (ρf and ρs) computed from the P- and S-impedance 
sections of Figures 4 and 5, where we used a c value of 2. This means that the ρf 
section can be interpreted as λρ, whereas the ρs section can be interpreted as µρ. 
Note that these sections behave exactly as we would expect. That is, the λρ section of 
Figure 6 shows a strong decrease in the gas-filled reservoirs, whereas the µρ section 
of Figure 7 shows an increase in the reservoir (since the sand matrix has a higher 
value than the overlying shale). 

Figure 8 shows a λρ vs µρ crossplot between the productive zones of the two 
sections, with the gas sand clearly visible. Since µρ is plotted on the vertical axis, the 
separation between the gas sand and the surrounding sediments is vertical, with gas 
coloured red, and non-gas coloured light blue. Figure 9 then shows the corresponding 
zones on the seismic section plotted from the crossplot of Figure 8. The gas zone is 
exactly where we would expect to see it. 
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FIG. 6. The ρf section found by combining the ZP and ZS inversions of Figures 4 and 5 using c 
value of 2. 

 

 
 
FIG. 7. The ρs section found by combining the ZP and ZS inversions of Figures 4 and 5 using 
c value of 2. 
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FIG. 8. A crossplot between the ρφ and ρσ sections of the previous two figures, over the 
productive zone. 

 

 

FIG. 9. The portion of the seismic section corresponding to the gas and non-gas zones. The 
"red" gas region is exactly where expected. 

Next, we repeated the same analysis using a c value of 2.333. Figures 10 and 11 
show the fluid and skeleton terms (ρf and ρs) computed from the P- and S-impedance 
sections of Figures 5 and 6, with this new constant. Note that these sections are very 
similar to those computed using a value of 2.0, (Figures 6 and 7) but show some 
slight differences at the pay zone. 
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FIG. 10. The ρf section found by combining the ZP and ZS inversions of Figures 4 and 5 using 
c value of 2.333. 

 

 

FIG. 11. The ρs section found by combining the ZP and ZS inversions of Figures 4 and 5 using 
c value of 2.333. 

Figure 12 shows the crossplot between the productive zones for the two sections of 
Figures 10 and 11, where the gas sand is again clearly visible. Figure 13 then shows 
the corresponding zones on the seismic section plotted from the crossplot of Figure 
11. Note that, although the change is slight, there is improved continuity at the gas 
sand level. Thus, although the value of 2.333 would appear to be a better value to use 
based on well-log data, it is only marginally better on our real data example. We 
would recommend determining the optimum value for c using well-log data, where 
possible. 
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FIG. 12. A crossplot between the ρφ and ρσ sections of the previous two figures, over the 
productive zone. 

 

 
 

FIG. 13. The portion of the seismic section corresponding to the gas and non-gas zones. The 
"red" gas region is exactly where expected. 

CONCLUSIONS 
In this paper, we have discussed Biot and Gassmann's theory and shown how this 

theory can be applied to the extraction of information about the fluid properties of the 
reservoir. We have also shown how the lambda-mu-rho technique, the pore modulus 
method, and the fluid discriminant are all related through the constant value used in a 
weighted difference stack between P-impedance squared and S-impedance squared. 
Our well-log example indicated that the value of this constant should be in the order 
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of 2.333, whereas our real data was less conclusive and indicated that a value of 2.0 
was acceptable. It would seem advisable to determine this value from well log data 
where it is available. These initial tests on the ρf attribute are encouraging in that it 
has proven to be a more sensitive discriminator of pore-fluid content than 
conventional inversions. The sensitivity results are consistent from the numerical 
models and actual well-log examples through to the testing on real seismic data. 
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