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Optimum projections for finite-difference transmitting 
boundaries 

Peter M. Manning and Gary F. Margrave 

ABSTRACT 
A technique is described to generate an optimum set of points beyond the boundary of 

a finite-difference model; points which can be used for finite-difference operations, and 
which eliminate reflections from that boundary. The rationale is explained, the 
mathematics are developed, and the final formulae are given. Examples are shown for the 
case of a two-dimensional elastic pressure wave. The limitations of the technique are 
shown to be consistent with the general limitations of simulating continuous waves by 
finite-difference techniques. 

INTRODUCTION 
There have been many techniques developed to reduce the reflections from the 

boundaries of finite-difference models, and simulate the infinite real earth. These 
techniques are useful for economic reasons, so that a model size can remain small and yet 
simulate the effects of specified internal boundaries without getting interference from the 
model edges. 

The basic technique is to provide extra rows and columns of points around the edges 
of a model. The amplitudes at these points are needed to allow the finite-difference 
operations to be executed within the model, but cannot themselves be generated by the 
same techniques because of their edge position. Unique algorithms, or in some cases 
unique conditions, must be used to calculate these amplitudes. 

The earlier techniques used to reduce boundary effects were called absorbing 
boundaries, and simulated the effects of having a highly attenuating material around the 
model. This technique is very practical where the modelling already accounts for viscous 
effects on the particle motion (Kelly and Marfurt, 1990). The viscosity is simply made 
very high for several rows and columns around the model�s area of interest. 

Another absorbing technique that can be used is to taper, at each time step, the 
amplitudes toward the model edge by a minimal amount. Cerjan et al. (1985) got very 
successful results by tapering to a maximum of 0.92 across a boundary zone of 20 points 
in width. With absorbing boundaries, the edge-point amplitudes are calculated by an 
approximate algorithm, but any errors that this introduces is shielded by the attenuating 
zone. The increased overhead caused by providing the attenuating zone is usually not a 
major barrier with modern computers. 

An alternative to absorbing boundary conditions can be called transmitting boundary 
conditions. Reynolds (1978) called his boundaries transmitting, and although Clayton and 
Engquist (1977) called their boundaries absorbing, they used algorithms similar to 
Reynolds. These algorithms project amplitudes into the boundary zones from the values 
already calculated for the zone of interest. Clayton and Engquist adapted a migration 
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algorithm to project boundary values. Reynolds factored the wave equation and then used 
approximations for finite-differencing. A requirement of these techniques is to select only 
those solutions that advance into the boundary, and suppress solutions that advance out of 
the boundary (the reflections). They are found to work very well with waves moving 
directly toward the boundary, but not so well with waves approaching the boundary at an 
acute angle. 

This paper describes a transmitting boundary solution for the second-order finite-
difference elastic wave equation. In this space of digital values, two unknowns must be 
found. The first unknown is the extra boundary value amplitude, and the second unknown 
is the advanced time-step amplitude that is calculated using the extra boundary value. The 
first of the two equations that is required for a solution is, of course, the time stepping 
equation. We have found that the second required equation is the one that relates all the 
first derivatives of an unimpeded advancing wave (the eikonal equation). Any solution 
that does not satisfy this equation must involve some reflected energy. 

The above simultaneous solution takes the form of a quadratic. The root of the 
quadratic must be chosen so that the slope of the wave toward the boundary is consistent 
with the slope in time of an advancing wave. In particular, a slope down toward the 
boundary must accompany more positive amplitudes with time, and vice-versa. 

THEORY 
The development of the theory starts with the definition of a scalar plane-wave, which 

may be chosen to advance with time 

 ( )( )tkxzFP ωθθ −+= sincos . (1) 

Then an equation relating the derivatives of the function may be shown to be 
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This is the well-known eikonal equation. Note that the squaring of the derivatives 
destroys the sign of an inward or outward wave, so that the selection of an outward 
advancing wave must be made by choosing the correct root. 

The equation of the scalar function P may be translated into a finite-difference version 
using central differences. If m, n, and k represent the function at x, z, and t respectively, 
then 
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where P(m,n,k) has the independent variables omitted unless they have been incremented 
or decremented. At the x border, where m now represents the x edge, the decremented 
variables can be assumed to represent interior spaces and older times, and are therefore 
known. Also all the n�s are known in the z direction (n+1 and n-1). The two unknown 
amplitudes are P(m+1) and P(k+1). 
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If R is defined by 

 ( ) ( )( )22 11 −−+= nPnPR , (4) 

and tv
xC ∆

∆=  (where ∆x = ∆z and generally 1≥C  for stability), then 

 ( ) ( )( ) ( ) ( )( )222 1111
2

−−+=+−−+ kPkPCRmPmP . (5) 

The wave equation, 
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has a finite-difference representation of the form 

 ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )2222

1211121121
t

kPPkP
vz

nPPnP
x

mPPmP
∆

−+−+=
∆

−+−++
∆

−+−+ ,(7) 

which may be converted into the form: 

 ( ) ( ) ( ) ( ) ( ) ( )( )PnPnPmPmP
C

kPPkP 411111121 2 −−+++−+++−−=+ . (8) 

Again, the two unknown amplitudes are P(m+1) and P(k+1). 

If D is defined by the equation, 

 ( ) ( ) ( ) ( ) PnPnPmPkPCPCD 4111122
22 −−+++−+−−= , (9) 

then, when equation (8) is substituted into equation (5) the quadratic equation in P(m+1) 
which can be derived is 

 ( ) ( ) ( ) ( ) 0
1

11
1
121 2

22222

2

2
2 =

−
−+−++








−

+−−+
C

DRCmPCmP
C

DmPCmP , (10) 

which can be solved for P(m+1), and using (8), for P(k+1). The root that must be chosen 
for the right (x) boundary is the one for which 

 ( ) ( )( ) ( ) ( )( ) 01111 ≤−−+∗−−+ kPkPmPmP , (11) 

ensuring that when the slope in the x direction is positive, the slope in the time direction 
is negative, and vice-versa. These are the conditions for a wave advancing into the 
boundary. 

For the special case C = 1, the solution for P(m+1) is 
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APPLICATION TO THE ELASTIC WAVE EQUATION 
The boundary conditions specified above have been adapted to the elastic wave 

equation by converting the elastic wave displacements into two sets of scalar amplitudes 
at the boundaries. Figure 1 shows the relative positions of the x and z displacements 
within the staggered grid at the right side (x) boundary. At the positions between the 
displacements where the displacements converge (or diverge), a pressure may be found 
by the formula, 

 ( ) ( )( ) ( ) ( )( )jmUjmUjmUjmUjmP zzxx ,1,,1,),( −++−−= . (13) 

Similarly, a torque may be fond at the intermediate positions staggered from the pressure 
positions using the formula, 

 ( ) ( )( ) ( ) ( )( )jmUjmUjmUjmUjmT xxzz ,11,11,11,),( −−+−−+−−+= . (14) 

Note that the relative values of the indices for Ux, Uz, P and T depend on how a particular 
staggered grid system is defined. 

The positions of Ux, Uz, P and T are related graphically in Figure 1. The displacements 
calculated within the normal (interior) steps of the model are shown by the arrows in 
black. The blue Ps and Ts are calculated from these displacements. The Ps and Ts are 
estimated at the red positions by the scalar projection described above. The projected Ts 
allow the red z displacements to be calculated, and then the Ps may be used to calculate 
the x displacements 

APPLICATION EXAMPLE 
Figure 2 shows an application of the transmitting boundary for a pressure wave within 

an elastic model. At time 201, the directly arriving P-wave has generated minimal 
reflections from the boundary. At time 301, the interaction of the transmitting boundary 
and the free surface boundary has generated an unacceptable point source. 

Corners involving transmitting boundaries require special coding to reduce 
undesirable artefacts (see Clayton and Engquist, 1977). This has not yet been attempted 
for this modelling code. 

LIMITATIONS OF THE TRANSMITTING BOUNDARIES CODE 

The techniques developed here were designed for plane waves, and may be found to 
be less than optimum for non-planar waves and combinations of plane waves with 
differing basic frequencies. Testing will show if these other waves and combinations 
cause significant problems. 

Application of the transmitting boundary code can also be expected to suppress 
reflections only to the extent that the finite-difference code simulates the continuous 
conditions. In other words, reflections will be suppressed to the same extent that the 
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sample rates chosen can represent the continuous equations (see Manning and Margrave, 
1999). Tests done with one-dimensional models confirm this expectation. 

Figure 5 shows a series of tests for application of transmitting boundaries on one-
dimensional data. The boundary condition is the one specified in Reynolds, and 
developed for central differences by a method parallel to that specified above for two-
dimensional data. The bottom graph in the figure shows the perfect sampling case where 
dt = dx/v, and here the reflection is completely suppressed. The upper three graphs show 
cases where dt = dx/2*v, or half the dt value needed for the perfect sampling case. These 
results all show noticeable reflections, but finer sample rates reduce the undesirable 
effect. 

CONCLUSIONS 
Theory shows that a finite-difference transmitting boundary condition can be specified 

that will eliminate reflections from a boundary under certain conditions. The conditions 
are: the incident energy is an isolated plane-wave, the finite-difference scheme is second 
order, and the elimination is within the limits expected for the spatial and time sample-
rates of the finite-difference scheme used. 

Practical tests done to date give reason to hope that the proposed method will be useful 
for most forms of wave energy. 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1: The right edge of a finite-difference staggered-grid model. The relative position of the x 
and z displacements (arrows) and P and T scalars are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2: P waves after impinging on a transmitting x boundary from sources marked S. After 
reflection a glitch is beginning to appear at the top right corner of the right plot. 
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FIG. 3: The effects of sample rates on reflections from transmitting boundaries are illustrated. The 
top three graphs show the benefits of finer sample rates. The bottom graph shows the complete 
reflection cancellation under perfect sampling conditions. 


