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processing 
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ABSTRACT 
The traveltime curves of P-S reflections are not hyperbolic. Thus, the classical 

hyperbolic approximation may not be valid for converted-wave data processing. This 
paper presents a new method, which expands the t2 -x2 formula with only two terms 
because a higher-order Taylor series expansion is mathematically complicated and also 
becomes inaccurate with increasing offset. The coefficient of the second term can be 
calculated accurately through explicit equations. The second term can be also factorized 
into a squared constant and a squared variable, which amounts to a transformation of 
velocity and offset. In the transformed system, the traveltime curves are hyperbolic and 
conventional processing procedures can be carried out. Synthetic stacks indicate that this 
method is valid until the percentage error of vp estimation is out of the range of �5% to 
10%. 

TWO-TERM TAYLOR-SERIES EXPANSION OF T2 �X2 CURVES 

The travel time curve of a P-P or S-S reflection from a horizontal reflector below a 
homogeneous isotropic layer is a hyperbola in the t-x domain: 
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where t is the travel time from the source to reflector and back to the receiver, x is the 
source-receiver distance, i.e., offset, t0 is the travel time at zero offset, and v is the 
velocity. Equation (1) is a straight line if t2 is viewed as the function of x2. The t2� x2 

curves from seismic data are routinely fitted linearly to give the intercept and the slope, 
which are interpreted as t0

2 and 1/v2, respectively. For P-S reflections, the t-x relationship 
cannot be expressed in the same form as equation (1), but t2 can still be seen as a function 
of x2 (Copsen 1935; Taner and Koehler, 1969), i.e., t2 = f(x2), which can be expanded in 
Taylor series about x2=0: 
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Determination of the high-order derivatives starting from the third term in equation (2) 
is quite mathematically involved (Tessmer and Behle, 1988; Thomsen, 1999; Tsvankin 
and Thomsen, 1994). The attempt to approximate t2 with more terms is not 
computationally efficient, and the approximations also become inaccurate with increasing 
offset because of truncation errors.  

In fact, t2 can be expressed as the sum of only two terms according to the Taylor series 
theorem. Equation (2) can be reformulated as: 
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where f(0) is t0
2,  f´ is d(t2)/d(x2) and c is some value between 0 and x2. The terms c and 

f´(c) are x dependent and equation (3) is not hyperbolic. On the other hand, f´(x2) can be 
defined as: 
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Integrating both sides of equation (4) leads to: 
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i.e.,   
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A comparison of equation (3) with equation (5) results in: 
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It is noted from Figure 1 that the travel times and offsets for P-S reflections are related 
as:      

 x v t v tp x p s x s= +  (7)  

where vpx , tp, vsx , ts are the horizontal components of velocity and traveltimes for P and S 
waves, respectively. As a result, f´(x2) can be derived as follows (Tsvankin and Thomsen, 
1994):   
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where p is the ray parameter. The evaluation of f´ reduces to the evaluation of ts/tp or tp/ts.  
The traveltime ratio tp/ts depends on the vp/vs ratio and offset/depth ratio (x/h). Let x/h=α, 
tp/ts=β and vp/vs=γ. They are related in the following formula (see APPENDIX A for 
derivation): 
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The tp/ts (β) can be solved from equation (9) as a function of x/h (α) and vp/vs (γ). Beyer 
(1984) gives a detailed analytical solution (see APPENDIX B for details). For a given 
geological model, vp, vs, vp/vs and h are fixed and f´ is a function of offset x only. 

In summary, t2 = f(x2) for the P-S reflection can be expressed as the sum of two-term 
Taylor series in equation (3), and f´(c) in this formula can be computed through equations 
(6), (8) and (9).      

NMO AND STACKING FOR SYNTHETIC DATA 
As stated in equation (3), f´(c) is offset-dependent. Direct t2�x2 curve-fitting for NMO 

calculation and stacking may be of poor quality, especially at far offsets. In order to make 
the traveltime curves hyperbolic, the original offsets have to be adjusted. The scheme for 
offset modification as shown in Figure 1 is to assume that a wave propagates at constant 
velocity from a new source XSnew to the CCP and then reflects back to a new receiver 
Xrnew, and that the time it takes is equal to that for the P-S reflection time. According to 
this procedure the fabricated constant velocity is the harmonic average of vp and vs so that 
the travel times at zero offset are equal, which is expressed as:  
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The adjusted offsets are computed as follows: 
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where V is the fabricated velocity, X is the new offset and x is the original offset. The 
manipulation in equations (10) and (11) amounts to factorizing the second term, f´(c) x2 in 
equation (3), into a squared new offset variable multiplied by a squared new constant. As 
indicated in equations (12) and (13), the new velocity and new offsets create hyperbolic 
travel time curves. Standard NMO, stacking and other processing procedures can be then 
carried out. 
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Figure 2 on the right shows the hyperbolic fitting to the original t-x curve for a 
reflector buried at 1500 m. The t-x curve is not hyperbolic and NMO calculation is 
inaccurate based on this hyperbolic fitting. Consequently, the stacked section on the left 
side of Figure 2 has smaller peak amplitude and poor resolution. For example, there are 
two separate small peaks generated from one reflector. Figure 3 on the right is the 
hyperbolic fitting to the transformed t-X curve. The shortened offsets due to 
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transformation can be observed. The t�X curve is hyperbolic and the NMO calculation is 
accurate. Figure 3 shows large peak amplitude and high resolution to the left.  

SYNTHETIC RESULTS BASED ON VELOCITY ESTIMATES 
The above transformation of velocity and offsets requires a knowledge of depth and 

velocities, which, in reality, are estimated from seismic data. For a simple case shown in 
Figure 1, vp can be evaluated from stacking velocity on P-P sections. The stacking 
velocity obtained from P-S sections may approximately represent the arithmetic average 
of vp and vs. As a result, vs can be derived. Moreover the depth h can be computed from 
vp, vs, and t0, which is acquired from hyperbolic fitting to the original t-x curve for the P-S 
reflection. The errors in the process of estimation may be large and the method may not 
be very useful. In order to test the validity, the exact value and inaccurate values of vp are 
substituted into this procedure for computation of vs and h. With the availability of vp, vs, 
and h, the new adjusted offsets can be calculated based on equation (11) and then 
equations (6), (8) and (9). The conclusions regarding the sensitivity of the results to the 
errors of velocity and depth can then be drawn from a comparison of stacked seismic 
sections. 

In Figure 4, the transformed offsets were calculated based on the estimates of 
velocities and depth. vp is precise, vs has the positive percentage error of 8.5% and h is 
15% greater than the exact value. Hyperbolic fitting to the t-X curve was performed for 
NMO calculation and stacking. As shown on the left of Figure 4, the stacking results are 
close to those in Figure 3 in terms of peak amplitude and resolution. Compared with 
Figure 2, it is significantly improved with much higher peak amplitude and better 
resolution. 

Adding 10% positive percentage error to vp results in -11.5% percentage error in vs 
and -3.8% percentage error in depth, in accordance with the process of estimation. The 
inaccurate velocities and depth were then input for calculation of new transformed 
offsets. Similarly NMO calculation and then stacking were conducted based on 
hyperbolic fitting to t-X curve. As shown in Figure 5, the peak amplitude is smaller than 
in Figure 3, but it is still bigger than in Figure 2. Most importantly, the resolution is 
enhanced appreciably. Given �5% percentage error in vp, 18.5% percentage error in vs 
and 11.2% percentage error in depth result. As shown in Figure 6, the results are close to 
those in Figure 5 in terms of peak amplitude and resolution. 

In Figure 7, the percentage error in vp is out of the range of �5% to10%. Consequently, 
the generated synthetic sections are not better than in Figure 2.  In other words, the 
method will become invalid when errors are considerable.     

CONCLUSIONS 
The P-S traveltime curves for converted waves are not hyperbolic, but t2�x2 can be 

expanded in a Taylor series about x2 =0 with only two terms. The coefficient of the 
second term, which is offset dependent, can be calculated accurately using an explicit 
expression. The second term can also be factorized into a squared constant and a squared 
variable, which is equivalent to the transformation of velocity and offset into a new 
system. In this system, the traveltime curves are hyperbolic so that standard processing 
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procedures can be used with good results. Synthetic seismic data indicate that the method 
improves NMO and stacking quality considerably as long as the percentage error in vp is 
within �5% to 10%. vp out of this range causes degradation in the results. 

REFERENCES 
Beyer, W. H., 1984, Standard mathematical tables, Boca Raton: CRC Press, Inc. 
Copson, C. T., 1935, Theory  of functions of a complex variable, Oxford: Oxford Universiy Press. 
Taner, M. T., and Koehler, F., 1969, Velocity spectra-digital computer derivation and applications of 

velocity functions, Geophysics, 34(6), 859-881. 
Tessmer, G., and Behle, A., 1988, Common reflection point data-stacking technique for converted waves, 

Geophysical Prospecting, 6, 671-688. 
Thomsen, L., 1999, Converted-wave reflection seismology over inhomogeneous, anisotropic media, 

Geophysics, 64(3), 678-690. 
Tsvankin, L., and Thomsen L., 1994, Nonhyperbolic reflection moveout in anisotropic media, Geophysics, 

59(8), 1290-1304. 

ACKNOWLEDGMENTS 
I would like to express my appreciation to the CREWES sponsors for their support of 

this research. I am also indebted to Chuck Ursenbach, Pat Daley and Larry Lines for their 
critical reviews and helpful suggestions. Finally I extend my sincere thanks to Rob 
Stewart, Gary Margrave, Don Lawton, Larry Lines and Jim Brown, who taught me 
advanced knowledge in seismic converted-wave exploration. 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.   Converted wave propagation and transformation of 
velocity and offset 
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FIG. 1.   Converted wave propagation and transformation of velocity and offset 
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FIG. 2.   Hyperbolic fitting and stacking using conventional processing procedures for a CCP
gather (vp=3000m/s, vs=1500m/s and h=1500m). The red line is the hyperbolic curve fitted to 
the data for NMO and stacking. As shown on stack sections, two small peak amplitudes are 
generated from one reflector. 

FIG. 3.   Hyperbolic fitting and stacking using conventional processing procedures for a CCP
gather with transformed offsets calculated from the accurate velocities and depth (vp=3000m/s, 
vs=1500m/s, and h=1500m). The red line is the hyperbolic curve fitted to the data for NMO and 
stacking. As shown on stack sections, there is only one large peak amplitude from one 
reflector. 
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FIG. 4.   Hyperbolic fitting and stacking using conventional processing procedures for a CCP
gather with transformed offsets calculated from the estimated velocities and depth 
(vp=3000m/s, vs=1500m/s+8.5%×1500m/s, and h=1500m+7.2%×1500m). The red line is the 
hyperbolic curve fitted to the data for NMO and stacking. As shown on stacked sections, the 
peak amplitude is smaller than that in Figure 3, but it is still much bigger than that in Figure 2 
and the resolution is also much improved relative to Figure 2.  

FIG. 5.   Hyperbolic fitting and stacking using conventional processing procedures for a CCP
gather with transformed offsets calculated from the estimated velocities and depth 
(vp=3000m/s+10%×3000m/s, vs=1500m/s−11.5%×1500m/s, and h=1500m−3.8%×1500m). 
The red line is the hyperbolic curve fitted to the data for NMO and stacking. As shown on 
stacked sections, the peak amplitude is smaller than that in Figure 4, but it is still bigger than 
that in Figure 2 and the resolution is also better than that in Figure 2.  
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FIG. 6.   Hyperbolic fitting and stacking using conventional processing procedures for a CCP
gather with transformed offsets calculated from the estimated velocities and depth 
(vp=3000m/s−5%×3000m/s, vs=1500m/s+18.5%×1500m/s, and h=1500m+11.2%×1500m). 
The red line is the hyperbolic curve fitted to the data for NMO and stacking. As shown on 
stacked sections, the peak amplitude is smaller than that in Figure 4, but it is a little bigger 
than that in Figure 2 and the resolution is also better than that in Figure 2.  

FIG. 7.   Hyperbolic fitting and stacking using conventional processing procedures for a CCP
gather with transformed offsets calculated from the estimated velocities and depth 
(vp=3000m/s+15%×3000m/s, vs=1500m/s−21.5%×1500m/s, and h=1500m−10.8%×1500m). 
The red line is the hyperbolic curve fitted to the data for NMO and stacking. As shown on 
stacked sections, the results are degraded with no higher peak amplitude and better 
resolution than in Figure 2.  
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APPENDIX A 
As shown in Figure 1, tp=XsC/Vp and ts= CXr/Vs, i.e., 
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Note: 
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where θ is the incident angle and p is the ray parameter. It can be derived from equations 
(A2) and (A3): 
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Let x=XsXr, h= XcC, α=x/h, β=tp/ts and γ= vp/vs. Substituting equation (A4) into 

equation (A1) results in: 

   

 

2 2

2
2

2
2 2

2

( )11
1

( - )11

x h

xx h

γ ββ
γ

γ β

+
+

=
+

+

 

 



Zhang 

10 CREWES Research Report � Volume 14 (2002)  

    

2

2

2
2

2

2
2

2

2 2
2

2

2 2 2 2

2 2 2 2 2 2

( ) 111
1

( - ) 111

( ) 1
11

( - ) 1
1

( ) ( 1) 1
[ ( 1) - ] ( 1)

α

γ β
α γα

γ β
αβγ

γ β
αβγ γα

γ β
αβγ γ β

α γ β αβγ γ β γ

+
+

=
+

+

+
+=

+
+

+ +=
+ + +

 

 i.e., 
 2 2 2 2 2 2 2 2 2[ ( 1) ] ( ) ( 1)β γ α γ β αβγ γ β+ + = + +  (A5) 

 
Reorganizing equation (A5) leads to: 

4 3 2 2 2 2 2 2 4 4 6(2 / ) ( 1- - ) / (-2 / ) -1/ 0β β γ β α α γ γ γ β γ γ+ + + + =  (A6) 

 

APPENDIX  B 
A quartic equation has the form (Beyer, 1984): 

 4 3 2 0x ax bx cx d+ + + + =  (B1) 

 
which has the resolvent cubic equation: 

 
                                  3 2 2 2- ( - 4 ) - 4 - 0y by ac d y a d bd c+ + =  (B2) 

Equation (B2) has the analytical solution in APPENDIX C. Let y be any root of equation 
(B2), and   
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If R is not equal to zero, then let 
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If R is equal to zero, then let 
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Then the four roots of equation (B1) are given by 
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APPENDIX C 

A cubic equation has the form: 

 3 2 0y py qy r+ + + =  (C1) 

which may be reduced, by substituting for y the value x-p/3, to the following form 
(Beyer, 1984): 

 3 0x ax b+ + =                         (C2) 

where a=1/3(3q-p2 ) and b=1/27(2p3 �9pq+27r). 

 Let  
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Then three roots of equation (C2) are given by: 
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Then three roots of equation (C1) are given by: 
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