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Multidimensional partitions of unity and Gaussian terrains 

Richard A. Bale, Jeff P. Grossman, Gary F. Margrave, and Michael P. Lamoureux 

ABSTRACT 
Partitions of unity play an important rôle as amplitude-preserving windows for 

nonstationary type filters. Multidimensional partitions of unity can be constructed by 
combining one-dimensional partitions as factors. By grouping neighbouring windows, 
arbitrary nonuniform partitions of unity can be formed, which can greatly reduce 
computation times.  

The Gaussian function displays a host of desirable properties, making it particularly 
well suited for use as an �atom� in multidimensional partitions of unity.   

INTRODUCTION 
Windowing functions, or �atoms�, form the basis for new Gabor transform (Gabor, 

1946) processing techniques such as Gabor phase-shift migration (Grossman, et al., 
2002b, this volume) and nonstationary deconvolution (Margrave and Lamoureux, 2001, 
and Grossman, et al., 2001). They also arise in other seismic methods such as Gaussian 
beam migration, and, more generally, in time- or space-variant filtering.   

A required property of such windows is that they may be used to form partitions of 
unity by summing together shifted versions of the window. A partition of unity is a 
collection of functions that sum to one everywhere on the domain of interest. Thus, when 
used in conjunction with analysis and synthesis windowing, they ensure an overall 
amplitude-preserving transformation (see Grossman, et al., 2002a, this volume, for more 
details). Another expected quality of a windowing function is a high order of 
differentiability, or smoothness. This gives good spectral domain behaviour and avoids 
undesirable effects such as Gibb�s phenomenon, or spectral ringing. In addition, for 
Gabor analysis we wish to retain, as much as possible, resolution in both the spatial and 
Fourier domains. Ideally, the atoms should also be compact (i.e. supported on a finite 
connected domain) or at least pseudo-compact (i.e. negligible outside such a domain).  

Gabor phase-shift extrapolators (Grossman et al., this volume) have employed 
partitions of unity along one spatial dimension in the context of 2D migration. In order to 
extend this approach to 3D migration, it is necessary to consider partitions of unity in two 
spatial dimensions. This motivates the generalization of existing partition of unity theory 
to the multidimensional setting. In this case, it is also desirable that the resulting 
multidimensional atoms display isotropic behaviour. This equates to having radial 
symmetry so that no direction is artificially preferred. 

In this paper, we show how a multidimensional partition of unity may be constructed 
from any one-dimensional partition of unity. We also demonstrate that the Gaussian 
window almost completely satisfies the above requirements. 
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THEORY AND EXAMPLES 

Constructing a 2D partition of unity 
Assume that we have an exact partition of unity along one spatial dimension, x, given 

by the atom, )(xf , and its translations ( ) ( )mf x f x m x≡ − ∆ , where m∈Z , the integers. 
This is expressed mathematically as follows: 

 ( ) 1,m
m

f x x
∞

=−∞
≡ ∀∑ . (1) 

Assume also that we have an exact partition of unity along another orthogonal 
dimension, y, given by the atom )(xg  and its translations: 

 ( ) 1,n
n

g y y
∞

=−∞

≡ ∀∑ . (2) 

It may be that f and g are the same function or they may be different. We now multiply 
equation (1) by equation (2) to obtain 

 ( ) ( ) 1, ,m n
m n

f x g y x y
∞ ∞

=−∞ =−∞
≡ ∀∑ ∑ , 

which may be rewritten as 
 

,
( , ) 1, ,mn

m n
h x y x y

∈

≡ ∀∑
Z

, (3) 

where ( , ) ( ) ( )mn m nh x y f x g y≡ . 

Clearly, equation (3) describes a covering of the plane by the 2D atom 
)()(),( ygxfyxh ≡  and its translations to grid points ( , ) ( , )mnh x y h x m x y n y≡ − ∆ − ∆ . 

Since the right-hand side of equation (3) is 1, we have shown how to construct a 2D 
partition of unity from any pair of 1D partitions of unity.    

This can be extended to the general N-dimensional case in the obvious way.  

The Gaussian atom 
A Gaussian function that can be used as an atom has the form, 

 
2 2/( ) e xxg x σ

σ π
−∆= , (4) 

where σ is the �halfwidth� of the Gaussian (standard deviation) and ∆x is the separation 
between atoms. The Gaussian has the following useful properties: 

Smoothness   
( )g x  is infinitely differentiable, as may be readily verified. In fact, the Fourier 

transform of a Gaussian function is another Gaussian, (of halfwidth /π σ ) which has no 
ringing in the frequency domain. 
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Resolution 
The Gaussian atom has optimal resolution properties in the spatial and Fourier 

domains: it is the only function that exactly minimizes Heisenberg�s uncertainty 
relationship, the fundamental limit on the product of resolutions in both domains. The 
proof that the Gaussian satisfies this limit is given in Appendix A.  

Compactness 
The Gaussian is not compact, since it has support on all of R . However, for a given 

machine precision eps, we have the following: 

 ( )
2

2exp( ) lnx eps x epsσ
σ
− < ⇔ >  (5) 

for a normalized Gaussian (i.e., ( ) ( )/ 0g x g ). This provides a limit on the support of any 
Gaussian g, beyond which its numerical representation on the computer is effectively 
zero. Thus, we have effective compactness. In MATLAB, for example, we find using (5) 
that the Gaussian decays quickly enough to allow truncation after about six halfwidths, σ. 

Partition of Unity 
The Gaussian does not yield an exact partition of unity. However, it is a very good 

approximation to one for good choices of ∆x and σ. Margrave and Lamoureux (2001) 
show that 

  ( )2/( ) 1 2cos(2 / )e x

n
g x n x x x

Z

πσπ − ∆

∈
− ∆ = + ∆ + ⋅⋅⋅∑ , (6) 

with exponentially smaller higher order terms. The deviation from 1 is approximately 
410−  when xσ = ∆ , i.e. when the spacing of atoms is equal to the width of the Gaussian. 

Arbitrarily small errors may be achieved by further reduction in the spacing ∆x. 

An illustration of a one-dimensional partition of unity using the Gaussian atom is 
shown in Figure 1. Note that the roll-off at the edges can be removed by including atoms 
outside of the domain, or by appropriate normalization. 

The 2D Gaussian atom 

If Gaussian atoms are substituted for both f and g in equation (3), we obtain 

 
( )

2222

2 22 2

//

/ /

( , ) ( ) ( ) e e

e

yx

x y

y

x y

y

x y

x

x

x yh x y f x g y

x y

σσ

σ σ

σ π σ π

σ σ π

−−

− +

∆ ∆= =

∆ ∆=
, (7) 

where ,x yσ σ are the widths and ,x y∆ ∆  are the spacings of the atoms in the x and y 
directions. If we set x yσ σ σ= =  and x y∆ = ∆ = ∆ , then we have the 2D Gaussian 
function: 
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2 2

2

2( , ) e rh x y σ

σ π
−∆= , (8) 

where 2 2 2r x y= + . Equation (8) is radially symmetric, so the 2D Gaussian has the 
desired property of isotropic behaviour, and is unique in doing so (see Appendix B). The 
2D Gaussian atom is shown in Figure 2. We have set 1σ = ∆ = , for simplicity. 

As mentioned in the 1D case, the 2D Gaussian atom h does not construct an exact 
partition of unity. Applying equation (6) along both x and y axes, we obtain: 

 [ ] ( )2/

,

( , ) 1 2 cos(2 / ) cos(2 / ) emn
m n

h x y x y
Z

πσπ π − ∆

∈
= + ∆ + ∆ + ⋅⋅⋅∑ , (9) 

showing that the maximum error is at most double that for the 1D case. 

To help visualize the Gaussian (approximate) partition of unity concept, we redisplay 
the atom in 3D, as a �Gaussian hill� (Figure 3a). We now sum all translations of this hill 
for a given value of x, to form a �Gaussian ridge�: 

 ( , ) ( ) ( ) ( ),mn m n m
n n

h x y f x g y f x
∈ ∈

= ≈∑ ∑
Z Z

 (10) 

which is (approximately) invariant with y (Figure 3b). Such a ridge can be constructed for 
each value of m, and then a summation over m gives the �Gaussian plateau� (Figure 3c), 
which is close to 1 everywhere. As for the 1D case, the roll-off at the edge can be 
removed by extending the summation to atoms outside of the domain. 

Nonuniform multidimensional partitions of unity 
A nonuniform partition of unity may be constructed by starting with a maximally 

redundant partition of unity, where the translation shift ∆x is equal to the grid sampling of 
the domain. In areas where larger windows are desired, for example where variations of 
the property being sampled are mild, several adjacent atoms can be summed to form a 
�molecule�. 

This principle can be applied to multidimensional cases in two alternative ways. The 
nonuniform partitioning may be applied along each axis, and then the resulting partitions 
multiplied to obtain the multidimensional partition. This results in rectangular partitions. 
Alternatively, the full maximally redundant set of multidimensional atoms may be 
constructed. These may then be used to form multidimensional molecules by summing 
arbitrary subsets. Such a molecule is constructed in Figure 4. Figure 4(a) shows the mask 
of grid points used to construct the molecule, whilst a colour display of the atom is shown 
in Figure 4(b). Three-dimensional displays of the molecule, nicknamed �Gaussian Butte� 
and its complement are shown in Figure 5.  

DISCUSSION  

Although the Gaussian is not an exact partition of unity, it can be normalized to make 
it so (as can any chosen atom, for that matter). This is achieved simply by dividing the 
individual atoms by the sum of all atoms. Doing so achieves exact partition at the 
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expense of losing exact isotropy for the multidimensional cases. Whether this trade-off is 
worthwhile no doubt depends on the application. 

The ability to generate molecules of a general shape in the multidimensional case may 
prove to be useful in representing velocity models for migration. For example, one might 
use a single molecule to characterize a salt body, whilst using smaller molecules or the 
underlying atoms for the surrounding sediments. 

Though we have focused on radially symmetric 2D Gaussian atoms, equation  (7) may 
be used to construct atoms that are elliptical in shape. These might be useful in cases, 
such as layered media, where material changes are significantly faster in one direction 
than in another. An alternative way to deal with this is to start with radially symmetric 
atoms and combine them to form elongated atoms. 

CONCLUSIONS 

Any one-dimensional partition of unity can be used to construct multidimensional 
partitions of unity. Such a partition forms a set of amplitude-preserving windowing 
functions.  

The multidimensional Gaussian is almost ideal as an atom, since it behaves 
isotropically, has infinite differentiability, and optimizes resolution in spatial and Fourier 
domains simultaneously. Whilst not strictly compact, it is effectively so. It forms a near 
partition of unity, with errors that can be reduced to any desired level by sufficiently 
close spacing of the atoms. 

The concept of a nonuniform partition of unity has been extended in a general way to 
the multidimensional case. 
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APPENDIX A 

Heisenberg�s Uncertainty Principle and the Gaussian 

The dispersion (about a) of a square differentiable function, g , is given by: 

 
( ) ( )

( )

22

2
a

x a g x dx
g

g x dx

∞

−∞
∞

−∞

−
∆ ≡

∫

∫
. (A1) 

Let the Fourier transform of g  be denoted !g : 

 ! ( ) ( )2 ixg e g x dxπ ξξ
∞

−

−∞

≡ ∫   . (A2) 

The dispersion in the Fourier domain (about α) is likewise given by: 

 !
( ) ! ( )

! ( )

22

2

g d
g

g d
α

ξ α ξ ξ

ξ ξ

∞

−∞
∞

−∞

−
∆ ≡

∫

∫
. (A3) 

Heisenberg�s Uncertainty Principle places a lower limit on the product of dispersions 
as follows: 

 !
2

1
16a g gα π

∆ ∆ ≥ . (A4) 

This describes a trade-off between resolution in one domain and achievable resolution 
in its Fourier dual domain. In quantum physics, this translates to uncertainty between 
position and momentum, due to the relationship between momentum and wavenumber 
(e.g. Landshoff and Metherell, 1979). 

We now compute equations (A1) and (A3) in the case of a Gaussian. Substituting 
equation (4) into (A2) gives another Gaussian: 

 
! ( ) 2 2

2 2 2

2 /ix xxg e e dx

xe

π ξ

π σ ξ

σξ
σ π

∞
− −

−∞

−

∆=

= ∆

∫ . (A5) 

The minimal dispersion for these Gaussians occurs for 0a =  and 0α = . In this case, 
we have: 
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2 2

2 2

2 2 /

0
2 /

a

x

x

x e dx
g

e dx

σ

σ

∞
−

−∞
= ∞

−

−∞

∆ =
∫

∫
. (A6) 

Integrating by parts: 

 
( )2 2 2 2

2 2

2
2 2 / 2 /

2
2 /

4

4

x x

x

dx e dx x e dx
dx

e dx

σ σ

σ

σ

σ

∞ ∞
− −

−∞ −∞
∞

−

−∞

= −

=

∫ ∫

∫
. 

Thus: 

 
2

0 4a g σ
=∆ = . (A7)  

Similarly, it can be shown that: 

 !
0 2 2

1
4

gα π σ=∆ = . (A8) 

Hence, combining (A7) and (A8), equality holds in the Heisenberg relationship (A4). 

This shows that the Gaussian function attains the best possible simultaneous resolution 
in both spatial and Fourier domains. It can also be demonstrated that only the Gaussian 
has this property (pers. comm., P. Gibson). 

APPENDIX B 

Suppose that ( )f x  is a symmetric, bounded, non-negative, real-valued function, 
which is at least twice continuously differentiable everywhere, and with 0)0( >f . These 
are reasonable conditions to impose on a potential window candidate. We want to 
determine the class of functions, ,f  that satisfy these requirements, plus the following 
condition: if h factors as 

 ( , ) ( ) ( ),h x y f x f y=  (B1) 

then h is radially symmetric, i.e., for any [ ]0,2 ,θ π∈  we require 

 
( ) ( )

( ) ( ) ( )2 2

, ,0 ,   where

 , ,    cos ,   and   sin .

h r h r

r x y x y x r y r

θ

θ θ

=

= + = =
 (B2) 

We claim that any such f  can be represented as a Gaussian. We first show that f  
cannot have compact support (so ( ) 0f x >  everywhere). Indeed, if ( )0 0h r =  at some 

0 0,r >  (note ( )0 0h > ) then for any [ ]0,2 ,θ π∈  we would have: 
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 ( ) ( ) ( ) ( )0 0 0 00 ,0 , cos sinh r h r f r f rθ θ θ= = = . (B4) 

However, this would imply that f  vanishes at 0 / 2r . Iterating by way of expression 
(B4), we conclude that f vanishes at a sequence of points, namely / 2

0 / 2n
nr r= . But 

0 as nr n→ → ∞ , so ( )0 0f =  by continuity, a contradiction. In particular, f  cannot 
have compact support.  

Next, observe that we can represent f  as follows: 

 )(2

)0()( xgxefxf = , (B5) 

provided ( )
( ) ( )( )

[ ]
2

ln / 0
,   if  0

''(0) / 2 (0) ,     if  0

f x f
xg x x

f f x


>= 

 =

 (B6) 

Here ( )0g  is computed as the limit of ( )g x  as 0x →  (apply l�Hopitals rule twice, 
using the fact that f is twice continuously differentiable). This ensures continuity of ,g  
and validates the representation (B5). 

We now argue that ( )g x  is in fact a negative constant, and hence deduce from (B5) 
that f  must be a Gaussian. First, since h is radially symmetric, 

 ( ) ( ) ( ) ( ),0 , cos sin ,h r h r f r f rθ θ θ= =  (B7) 

we are free to choose any value of ,   say  0 and / 4θ θ θ π= =  without changing the 
product (B7). Substitution of these values into (B7) thus yields 

 ( ) ( )
2

0 .
2

rf f f r   =    
 (B8) 

If we then represent both sides of (B8) as in (B5), we easily conclude that  

 ( )
2

rg g r  = 
 

. (B9) 

This implies that g is constant for any given 0r > , and by continuity of g, we see that  

 [ ]
0

lim ( ) ''(0) / 2 (0) .
x

g g x f f
→

≡ =  (B10) 

Now g is either positive, negative or 0.  The case 0=g gives a constant f, which is not 
of interest, though might be regarded as a degenerate Gaussian.  If 0>g , f is no longer 
bounded. Hence 0<g  and we have: 

 ( ) 2 2/

2

( ) 0 ,   where

2 (0) / ''(0).

xf x f e

f f

σ

σ

−=

= −
 (B11) 

Equation (B11) completes the proof that f  can be represented as a Gaussian. 
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FIGURES 

 

FIG 1. One-dimensional partition of unity using a Gaussian atom. The numbering along the x-axis 
refers to the Gaussian atom number. Roll-off effects occur because a finite number of Gaussians 
are used.  

 

FIG 2. Two-dimensional Gaussian atom displayed as contour plot.  
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(a)  

(b)  

(c)  

FIG 3. Almost exact partition of unity using 2D Gaussian (�Gaussian hill�) atoms (a).  Summation 
of 2D Gaussians along a constant x coordinate of grid gives the  �Gaussian ridge� (b). Summing 
Gaussian Ridges for all x coordinates gives the Gaussian plateau (c). Edge effects can be 
removed by extending summation beyond domain of interest. 
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(a) (b) 

FIG 4. A non-uniform partition of unity. (a) Mask of grid-points used in molecule; (b) resulting 
molecule. 

 

(a)  

(b)  

FIG 5. Non-uniform partition of unity, based upon �Gaussian butte� (a), and its complement (b). 


