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ABSTRACT

Vertical and horizontal transverse isotropy (VTI and HTI) provide good models for
wave propagation in many rock media. Expressing the exact body-wave velocities in TI
media requires five parameters (in addition to density); expressing just the exact P-wave
velocity requires four. That is more than can usually be estimated from surface seismic
data. In this report we review a recent paper by Fowler, who makes several practical
approximations for P- and S-wave phase and group velocities, each using only three
parameters. It is shown, among other things that, with a good choice of parameterization,
P-wave velocities become nearly independent of v, the vertical S-wave velocity. We
propose some further potentially valuable extensions on Fowler’s work

INTRODUCTION

Fowler (2202) carried out a sytematic study of several different approximations to the
P- and S-wave velocities in VTI media, different ones of which may be more or less
practical in different situations. We shall first review and clarify Fowler’s (2002) work
and then propose a number of potentially useful extensions of it.

Phase velocity and polarization of body waves propagating in VTI media can be
obtained from the Kelvin-Christoffel equations (e.g. Musgrave, 1970). Solving these
equations for the plane of propagation (7, =0) yields:

2 2 2
Cllty +Cyuny — pv 0 (C13 +cyq)n ng
2 2 2
2 2 2
(c13 +CaqIn ny 0 CagMy +C3305 = PV

Finding the eigenvalues of this determinant leads to phase-velocities for P, SV and SH
modes. Here, ¢;; are the stiffness and p the density. Then

V3 (0) = agg sin® @ +a,, cos* @ )

where a;; = ¢;/p , and

2V§3,SV (0) = a,, sin” O+ ay; cos” O +ay,

1@, —ag)sin® 0—(az; —agy)cos? Of +(ayy +agy)sin>26 - ()

Here weak anisotropy is assumed and some practical limitations are set on P and S phase
velocities. In practice, /2 < vp, Ivg, £4; 0<£<0.2, and —0.05<6<0.1 (Fowler,

2002), where v, is the vertical P-wave velocity, vy, the vertical S-wave velocity and &
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and o are Thomsen’s (1986) anisotropy parameters, defined in the next section.

VTI PARAMETERIZATION FOR SYMMETRY PLANES
In equations (2) and (3), solving for P-wave phase velocity for 8 =90° and 8 =0°:

2 _ . 2 _
Ve =app; and vy =ay;. 4)

Solving now for SV-wave phase velocity for & =90° and 8 =0°:
Vszx = Vszz Sy (5)

Thomsen (1986) introduced the dimensionless parameters & & and ¥ for VTI media.
They are defined in terms of the stiffness by:

a, — sy
E=——"—"—"— 6
2as, ©)
5= (ay +a,)’ —(ay,; —ay,)’ (7)
2ay;(ay; —ay,)
and
_ %66 — a4 (8)
4 2ay
Tsvankin and Thomsen (1994) also define the related parameter o as:
2
o= (@J (e-6)= (@33 = gy)(@)) = agq) = (a3 +ayy)’
Vso 2a4(ay; —ayy) (9)
and Alkhalifah and Tsvankin (1995) introduced the parameter:
-0
= . 10
7 14206 (10)
From equation (6) and Fowler’s notation:
v =(1+2e)v,, (11)
We also have this relation for the small-offset P-wave normal-moveout velocity:
2 _ 2
Vo, =(1+20)v;, (12)
ve, = (1+20)v2 (13)
v,zjx =1+ 277)v;n (14)

Considering the definition of Jd one gets:
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(a; +ay, )2 =20ay;(as; —a,)+(a; — a44)2 (a)
(a;; + a44)2 = (a3 —a, )((1+26)ay; —ay,) (b) (15)
(a; + a44)2 =(ay; —ay, )(VIZ,,, —ay,) (C)
(a13 + Vszz)2 = (Vlzyz - vszz )(v;zm - Vszz)' (d)
Equations (15) are not the only possible factorization. In general:
(a; + sz )2 = (V,Zal - sz )(Viz - sz ). (16)
For different possible v, one can calculate v, as:
(@, +ve)*
b = (lzﬁ + V. (17)
vpl vsz)
2 252 2 252
v —v Vo =V
V22 :( pz sz) ( pn sz) +V2 ) (18)
p (V2 _ V2 ) sz
pl sz
Some possible values for vf,l are:
2 2
v +2v
VsV, Va=vi Vizaganl, v=lelZ)
( -2 + 2 —2) (19)
— v Z v X
p12 - p—zp’ vlz’l =V Vpxs

With the above notation the exact P and SV phase velocities become:

2 2 2 2 2 2
2vp ey (@) =V, sin" O +v, cos” 0 +vg

> (20)
J_r\/[(v;x —ve)sin® 6+ (v, — v, )cos’ 9] +(ay; +v2)*sin? 20

Figure la (after Fowler, 2002) shows v,(8) from equation (20). The various curves
represent different values of v . Clearly the P-wave velocity depends strongly on v, .
Figure 1b shows, however, that using factorization (15d) and replacing a,;, this

dependence on the value of v, is nearly eliminated.

P-WAVE PHASE VELOCITY APPROXIMATION

Equation (20) for P-wave velocity may be rewritten as:
25 () - vszz] = (vlzjx —vi )sin2 6+ (vlzjz —vi )cos2 0
+ {[(vf,x - vszz )sin2 o+ (vf,z - vszz )cos2 0]2 (21)

+ [(a13 + VSZZ)Z - (v;x —v2 XV;Z —vZ )} sin’ 2‘9}1/2
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Fic. 1. P-wave phase-velocity curves for varying values of v, The parameters v,, = 4 km/s,
£=0.2, and 6= -0.05 are kept fixed, while v, is allowed to vary from 1.0 km/s to 2.6 km/s. In (a)
the P-wave phase velocity is parameterized by the fixed value of a,; = 13.18 km?/s®, whereas in
(b) a parameterization with a fixed value of v,, = 3.79 km/s is used instead. The second
parameterization removes nearly all the variation with v,.

Replacing a,, using factorization (16):

b2 @)-2 ]

or:

_ (.2 2 )2 2 2 2
= (v x—vsz)sm 9+(vpz—vsz)cos 0

(22)
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2 2 2
% % . %
2vﬁ(¢9)|:1— N }zvfm 1-—== sm2¢9+v]2]Z 1- ;z cos’ @
%

Vpx Vpz
2
v v
2 sz s 2 2 sz 2
+ Vie| 1 == |sin” & +v,, | 1-—= Icos” &
Vo Vo
2 2
2 2 Vsz Vsz
+ VoV l-— | 1-—
Vil Vo
1/2
2 2
2 2 Vsz Vsz i 2
- ViV | 1= | I———|sin” 20
Vi Vo

Fowler (2002) chose a constant reference velocity v, in the range of v, (8), so as to

allow replacement of v3(8), v, v, v2, and vf,z with vf,r. This substitution is

pz> “px> Upl
reasonable if shear velocity is relatively small and P-wave anisotropy is not too great; and
also if vlzmﬁn<v}271 <v}27max and vf,min<v;2<vf,max. Then applying this to equation (22)

one gets:

2 2 2

2 v 2 v ) 2 v 2
Wp(O) 1-—F5—|=v,| |- |sin" O+, | 1-—F|cos” O
v, (0) Vi Vi
2 2 :
2 4 ) 2 v 2
+ | V| =57 [sin" @+ v | 1—-—= |cos™ O
Vi Vi
(24)
2 2
2.2 Vsz Vsz
Vi Vi
1/2
2 2
_ 22 Vs VYV )
ViVoe| 1= =5 | 1= =% | [sin” 26
Vi Vi

All terms involving the reference velocity now cancel out to give the simpler three-
parameter approximation:

2v3(0)= vf,x sin” @ + vf,z cos’ @

2 2 2 2 2.2 2 2 )2
+ \/[vpxsm 6 +v,, cos 9]2+(vp1vp2—vpzvpx)sm 20 (25)

= V2 (O)+ v (6)+ (2w, — 22 Jsin® 26

2 2 2 2 2
where v, (0)=v, sin" 0 +v, cos” 6.
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Fowler (2002) then catalogues several different linear approximations, many of them
previously published.

Forv, =v, and v, =v,, equation (25) becomes:

Approximation P1:

2v2(0) =2 (8) + V5, (8) + v, (v2, —v2,)sin® 20

v (v2 —v2 )sin’ 26 (26)
=v2,(0) 1+ |1+
Ve (0)

(Stopin, 2001; Alkhalifah, 1998).

Approximation P2:
Linearizing the radical:
2 2 2
ve (v, —V
v (0)=v:.(6) + a z pX)sinzé?coszH

pe

2 2 2 (27)
2 2 Vi (Vpn B vpx) .2 2
vp(@)=v, (0) 1+ —————sin" fcos” &
pe
(Dellinger et al., 1993; Klie and Toro, 2001).
Approximation P3:
Taking the square root of both sides and linearizing the radical:
v, (0)=v (9)+Msm29cos29 (28)
P pe 2\};6 (9) :
Taking v, @)=v . (for near offsets) yields:
Approximation P4:
vi(@)=v: (6)+ (2 —v> )sin’ @cos’ @
4 pe pn px (29)

12 2 2 s 2 2 2 - 4
=v,(f)cos” @ +v,, sin” fcos” @+ v, sin" 0

(Harlan, 1995; Stopin, 2001).
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Approximation PS:
Linearizing (29) one step further:

2 2
(Vpn - vpx)

vp(@)=v,(0)+ sin® @cos’ 6. (30)
v,
Approximation P6:
Replacing vzx by vfm / v;x yields:
v: (v: —2
v (0)=v> (0) + Vi 4px) sin” @ cos” 6 (31)
v
v2 cos’ @+ —"sin’ @
Vo
(Tsvankin and Thomsen, 1994).
Approximation P7:
Again linearizing equation (31) gives:
V2 (v2 =2
v (0)=v,,(6) + i Vi px)4 sin® @cos’ 6. (32)
v
2v,, (H){viz cos’ @ +—"sin’ 9}
Vi
From the exact P-wave phase velocity, by linearizing the radical, one gets:
2v,(0)=(v,. () +v) + (v,.(0) — V)
a, +v2) = (v, —v)(vi —v: (33)
+ 1+( 13 sz) - ( pz Zszz( §23 sz)sin 20
(v, (@) =vy)
Linearizing the radical:
2 2 2 2 2
v, (@)=, @) +v )+ (v, (6)—v.)
a, +v2) = —v)(vi -V (34)
+ 1+( o tve) 2( = ;Z)E a ”)sin229 .
2(v, (0)—v.)
Using the substitution (a,; +v2)> = (vi, —v2)(v., —v.):
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Approximation P8:

2 2 2 2
(sz - vsz )(vpn - vpx )

v2,(0)— vl

va(0)=v:.(0)+ sin’ @cos’ (35)

Linearizing one more time yields:

Approximation P9:

2 2 2 2
(vpz - Vsz )(vpn - vpx)

2, (O)[v,.(0)—v..]

v,(0)=v,.(0)+ sin®@cos’ 0. (36)

Comparing approximation P2 and P8, one sees that they are the same, except that in P2
Fowler used the general factorization form: (a,, +v.)* = (v, —vi)(v., —v.)

whereas in P8 he used the substitution (a; +v.)* =(v,, —v.)(v2, —v.). Expanding

equation (33) around v, gives:

v2 v2
vi(&):v;[1+(%—l sin® @cos” O+ —--—1sin* @ |. (37)
Vpz Vp:

Taking the square root of each side and linearizing the result:

Approximation P10:
v v
v,(@)=v, 1+l £ -1 si1126’cos2¢9+l 2 —1|sin* @ (38)
2\ v, 2\ v,
v v
2v,(0)=v,.| 1+cos’ @ +—L-sin” Gcos” § + —=sin" & (39)
1 1
and
v,(0) = v, (1+8sin® Bcos’ 6+ esin 6). (40)

The approximation P10 is the approximation suggested by Thomsen (1986) and it is less
accurate at wide-angle propagation because the expansion was carried out around v, .

VTI PARAMETERIZATION FOR NONSYMMETRY PLANES

The dimensionless anisotropy parameters are particularly suitable for simplifying the
P-wave phase-velocity function in the limit of weak anisotropy. For the planes as
symmetry as shown above, it is sufficient just to adapt the known expression for weak
transverse isotropy. Approximating the P-wave phase velocity outside the symmetry
planes is obtained in Tsvankin (1997) by linearizing the exact P-wave phase-velocity
equations:
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va(6) = v, [1 +2n'e® +2nyeW + 20l n; 8P + 215078 + 2nin; (2@ + 5(3))] (41)

It is convenient to replace the directional cosines, n,, of the phase velocity vector by the

polar (0) and azimuthal (¢) phase angles,

n, =sinfcos¢, n,=sinfsingy, n,=cosf. (42)

Taking the square root of equation (41) yields the phase velocity exactly in the same form

as in VTI media for symmetry planes, but with azimuthally dependent coefficients & and
o:

v, (0,0)=v, (1+8(p)sin® O cos® 6+ &(p)sin* ) (43)

where:
0(@)=06"sin”> p+ 6 cos® @ m
g(@)=€Vsin* p+e? cos* p+(2e? +5Y)sin’ pcos’ ¢

GROUP-VELOCITY APPROXIMATION

In general, the group velocity can be found from the phase velocity and phase angle
via the relations:

2
7= 0+ 20
(45)
v(@) do
Just for the SH-wave we have an explicit equation for group velocity:
Vg (@) =v,. cos® ¢ +v. sin’ ¢ (46)

But for exact P or SV waves in VTI, there is no such simple explicit solution, so group
angle and velocities must be derived numerically from phase angles and velocities. Muir
and Dellinger (1985) and Harlan (1995) have suggested using substitution of group
slowness for phase velocities to obtain reasonable approximations for P and SV waves.
They pointed out that under this substitution:

-1

@) =V (¢)+{dVd (ﬂ
¢ 47)
1

tan@-9)=V(9) f’”

Making this substitution directly into different P-approximations yields the group-
velocity approximations In the group-velocity approximations we used

v, 2—v - sin ¢+v cos” ¢. They are:
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Approximation P1:

2W2(9) = V2 (@) Vit (9) +v, 2 (v, —v,2)sin® 29 (48)
Approximation P2:
V—Z( -2 —2)
Vil (9)=V,  (9) +————"—sin’ gcos’ ¢ (49)
Ve (9)
Approximation P3:
VIW: =v2)
V@)=V (@) + L "sin® gcos’ 50
r (P)=V,. (9) 27 9) ¢cos” g (50)
Approximation P4:
Vol (9) =V, (#) +(v,, —v,)sin’ pcos” ¢ 51)
Approximation P5:
(=)
Vo (9)=V,. (§) +—"———sin” pcos’ ¢ (52)
' ’ 2v,0(9)
Approximation P6:
VIV =V
Vol @)=V, (9)+ G fx) sin” g cos” ¢ (53)
\ 2
vicos’ p+—2"sin’ ¢
px
Approximation P7:
2,2 2
v, (v, —Vv
Vil (@) =V, (9)+ =0 Vi = sin” gcos” ¢ (54)
2vpe (¢){ V. COS ¢+ sm ¢]
v, px
Approximation P8:
, R —2 —2) -2 _V—Z) , )
V, (@) =V, (9)+ " sin® ¢cos (55)
P ’ Vid (@) -vy peos?
Approximation P9:
v—z vy 2 =2
V@)=V, (9)+ ( - ), pfz) sin’ @cos’ 0 (56)
WD, (9) -]
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Approximation P10:

2 -2
v v
2V () =v,.| 1+ cos® ¢+ —2-sin’ pcos® ¢ +—L-sin’ ¢ (57)

pz Ve

PROPOSAL FOR FUTURE WORK

Fowler (2002) stated that it is often a challenge to determine good subsurface
velocities for prestack migration of steep-dip reflection data. For computational
efficiency, it is usually necessary to use simpler expressions with fewer parameters than
those for exact transverse isotropy. The various approximations listed above — as well as
many more for SV waves, plus further sets for P-SV dispersion relations and traveltimes
— were all worked out by Fowler (2002). However, it remains for us to test the various
approximations and determine which are more appropriate for what circumstances.

We envisage many different such tests that one could run on the phase-velocity
expressions. There is also a need for accurate group-velocity approximations for cases
where the exact group-velocity expression cannot be determined analytically from the
phase velocity. Testing here is also anticipated. In addition, this entire analysis could be
extended, in a fairly straightforward way, to the case of horizontal transverse isotropy
(HTTI) and, in probably a less straightforward way, to the orthorhombic case.
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