
The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 1

The fusion of ProMAX and Perl

Henry C. Bland

ABSTRACT
ProMAX and Perl are two large software packages which, when combined, offer a

practical and powerful processing tool for seismic data processing.

ProMAX is one of the most common seismic data processing software systems
currently available. It gained popular acceptance in the processing industry because of its
wide array of processing operations, its ability to work with large datasets, its ease of use,
and its interactive processing tools. Although a wealth of processing modules are
supplied with ProMAX, cases arise when relatively simple but unusual tasks are made
daunting by limitations of pre-existing process modules. Working as an add-in module
for ProMAX, the CREWES Perl Process lets one write ProMAX processing modules
without leaving the ProMAX environment. It fills the niche of solving simple, unusual
processing tasks that do not warrant full-scale module development (program coding,
menu coding, compiling, and linking). It is ideally suited for ad hoc tasks like correcting
geometry values in header words or correcting small data errors. With complete access to
trace data, it can also be used to implement data processing algorithms. By writing in
Perl, one gains access to an extensive library of subroutines that can be harnessed to
provide ProMAX with powerful new features. A number of examples illustrate the
operation and features of CREWES Perl Process. We show that the fusion of Perl with
ProMAX results in a system that is both practical and versatile.

A VERY BRIEF INTRODUCTION TO PERL
Designed to be programmer-friendly and platform-neutral, Perl is a high-level,

general-purpose programming language. Perl has become the language of choice across
all platforms for programmers engaged in rapid prototyping, system utilities, software
tools, system management tasks, database access, graphical programming, and world
wide web programming (Christiansen, 1999). It borrows many features of C, but has the
ease-of-use of Basic. The standard library of functions is extremely powerful, allowing a
few lines of Perl code to do the equivalent of several hundred lines of C code.

In the geophysical processing community, Perl is popular for reformatting and re-
working well-log files and acquisition-geometry files. It is an invaluable tool extracting
data from text files, and has the ability to read and write binary files. The author is a
proponent of Perl, and recommends it to those who work with any kind of data. There are
many excellent sources of information about Perl on the web (www.perl.com) and in
printed literature (Wall, 2002 and Schwartz, 2001). A quick review of the Perl language
may aid in the understanding of the examples that follow.

THE CREWES PERL PROCESS
The CREWES Perl Process (CPP) is an add-on module, which integrates into the

ProMAX processing environment. When installed, the CREWES Perl Process appears in
the menu along with the standard ProMAX processes (e.g. AGC, NMO). CPP takes its

Bland

2 CREWES Research Report � Volume 14 (2002)

direction from user-supplied Perl code, typed directly into its parameter menu. CPP is
able to read and/or write both trace headers and trace data under program control. When a
flow is executed, each trace filters through CPP and is acted-upon by the user-supplied
Perl code. CPP can perform a myriad of trace/data operations based on the cleverness (or
simplicity) of the code supplied.

FIG. 1. CPP can be inserted into any processing flow. The figure shows some of the parameters
available.

Perl code can come from one of two places. It can be typed directly into the CPP
parameter menu, or it can be read from a file (external to ProMAX). In cases where the
Perl code is lengthy, it is often more convenient to work with an external file due to
improved editing facilities.

MODIFYING TRACE HEADERS
ProMAX trace headers are typically manipulated using Trace Header Math process.

CPP can do much more than simply modify trace headers, but to learn the basics of CPP
it is helpful to illustrate it as a Trace Header Math (THM) replacement. Here are some
specific differences between CPP and THM:

• CPP can propagate values from one trace to the next. THM has no memory to
allow access to header values from prior traces.

• CPP defines new headers explicitly. THM defines new headers anytime an
assignment is made to a previously nonexistent trace header. Though it takes a
little more typing to define a new trace header, this prevents accidental creation
of new headers in the event of a header-name spelling error.

• CPP automatically converts integer expressions to real values when assigning
real header words. It also automatically converts real values to integers when
assigning integer header words. In general, one doesn�t have to worry about
data types with CPP.

The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 3

Example 1: Simple modification of a trace header
Consider a processing flow like this:

Disk Data Input <- Input
Trace header math REC_X = REC_X – 8.6
Disk Data Output -> Output

We can accomplish the similar result using CREWES Perl Process in place of the Trace
Header Math processes. The new ProMAX flow is:

Disk Data Input <- Input
CREWES Perl Process (typed-in Perl code to follow)
Disk Data Input -> Output

The following (simplistic) Perl code implements the desired operation (subtract 8.6 from
the receiver X-coordinate):

sub onTrace {
 $rec_x = gethdr(’REC_X’);
 $rec_x = $rec_x – 8.5;
 puthdr(’REC_X’, $rec_x);
}

We shall describe the above four lines of Perl code in detail. The first line contains the
code: sub onTrace. This introduces a subroutine that will do all the work. CPP is very
specific about the name of the function that does the work. In trace mode, the work
function must be called onTrace. In ensemble mode, the work function must be called
onEnsemble.

In Example 1, onTrace is called once for each trace that is processed. When the
gethdr function is called (line 2), it reads the REC_X header from the current trace. The
result is placed in the variable $rec_x. In Perl, a dollar sign precedes all variable
names1. Line 3 subtracts 8.5 from $rec_x. Line 4 calls the puthdr function to store the
$rec_x variable into the REC_X trace header. Readers might notice that braces (curly
brackets) enclose the contents of the onTrace subroutine and a semicolon ends every
statement. Though we typically indent Perl code with spaces to tabs to make it readable,
Perl is insensitive to the presence of extra spaces or tabs. Perl requires semicolons to
separate statements, even if they appear on separate lines.

1 To be more accurate, $ precedes scalar variables and references. Vector variables and �glob� variables are
preceded by @ and * respectively.

Bland

4 CREWES Research Report � Volume 14 (2002)

The Perl motto is �There's more than one way to do it�. We could rewrite Example 1
in a more concise way using the following code:

sub onTrace {
 puthdr(’REC_X’, gethdr(’REC_X’) – 8.5);
}

Example 2: Conditional modification of trace headers
When processing data we often face the challenge of correcting errors in specific header
words over a small portion of the dataset. In this example, we conditionally modify the
CDP_Y header if the CDP header is less than four. Consider the following conventional
ProMAX processing flow that performs this task:

Disk Data Input <- Input
IF Mode: Include the traces in the list
 Primary Trace: CDP
 Trace list: 1-4
Trace Header Math CDP_Y = CDP_Y + 12
ELSE
Trace Header Math CDP_Y = CDP_Y - 5
END IF
Disk Data Output -> Output

We can accomplish the same task using CREWES Perl Process. The processing flow is
trivial:

Disk Data Input <- Input
CREWES Perl Process (code to follow)
Disk Data Output -> Output

The associated Perl code is shown below:

sub onTrace {
 $cdp = gethdr(’CDP’);
 $cdp_y = gethdr(’CDP_Y’);
 if ($cdp <= 4) {
 $cdp_y = $cdp_y + 12;
 } else {
 $cdp_y = $cdp_y - 5;
 }
 puthdr(’CDP_Y’, $cdp_y);
}

The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 5

Again, we could write the previous code snippet more concisely:

sub onTrace {
 if (gethdr(’CDP’) <= 4) {
 puthdr(’CDP_Y’, gethdr(’CDP_Y’) + 12);
 } else {
 puthdr(’CDP_X’, gethdr(’CDP_Y’) – 5);
 }
}

Example 3: Remembering values from trace to trace
One of the weaknesses of ProMAX�s Trace Header Math is its inability to remember

context from one trace to the next. For example, the following Trace Header Math
operation does not work as expected:

CDP = CDP + 1

If the CDP header is zero for all traces in the dataset, this invocation of Trace Header
Math would simply cause all traces to have a CDP of one. We would not get the more
desirable result of a sequence of CDP values, increasing by one per trace. Unlike Trace
Header Math, CPP remembers the value of variables from one trace to the next:

$cdp = 0;

sub onTrace {
 $cdp = $cdp + 1;
 puthdr(’CDP’, $cdp);
}

The above CPP code would place an increasing sequence of values in the CDP for each
trace in the dataset.

Example 4: Applying the Fibonacci series to trace headers
A more interesting demonstration is to assign the Fibonacci series to a trace header for all
traces in a dataset. The Fibonacci series is recursively defined in equation (1):

−+−
=∨=

=
)2()1(:

:)1()0(
)(

xfibonaccixfibonacciotherwise
xxx

xfibonacci (1)

Bland

6 CREWES Research Report � Volume 14 (2002)

The following example assigns the sequence 1, 2, 3, 5, 8, 13 ... to each trace�s
SOU_SLOC header word. This task would be is difficult to reproduce using Trace Header
Math:

$f0 = 0;
$f1 = 1;
sub onTrace {
 $sum = $f0 + f1;
 $f0 = $f1;
 $f1 = $sum;
 puthdr(’SOU_SLOC’,$sum);
}

As unrealistic as this example is, it illustrates CPP�s ability to perform programming
tasks within the ProMAX environment.

Example 5: Defining new header words
CPP requires explicit instructions to create new trace header word. To create a new

header word one calls the defhdr function. The defhdr function accepts three
arguments: the name of the new header word, the data format (integer, real, or character),
and the description. All initialization code, particularly calls to defhdr, must reside
outside any subroutines. Details on the defhdr function are presented in the Appendix
A.

This following example defines a new trace header that contains the distance from a
geophone to the recorder:

defhdr(’RECODIST’,’R’,’Distance to recorder’);
$recorderX = 58123;
$recorderY = 872741;

sub onTrace {
 $dx = gethdr(’REC_X’) - $recorderX;
 $dy = gethdr(’REC_Y’) - $recorderY;
 puthdr(’RECODIST’, sqrt(($dx * $dx) + ($dy * $dy)));
}

The first three lines are executed during the initialization phase of the flow because they
reside outside the onTrace function. It is mandatory to place the defhdr function
outside of onTrace, and it makes sense to place the initialization code somewhere where
it will only be executed once.

The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 7

Example 6: Writing character format trace headers
Character headers can be used to display test parameters as generated by the ProMAX

Parameter Test module. CPP lets us place any kind of textual information into text
header words. The following example shows how traces can be annotated based on the
value of a particular numerical header word:

sub onTrace {
 if ($GEO_COMP == 1) {
 $PARMTEST = 'Vertical';
 } elsif ($GEO_COMP == 2) {
 $PARMTEST = 'Inline';
 } elsif ($GEO_COMP == 3) {
 $PARMTEST = 'Crossline';
 }
}

After running CPP with the above code, the PARMTEST header would be set to indicate
the type of geophone used for each trace. When the output dataset is then viewed using
ProMAX�s Trace Display process, we see value of PARMTEST alongside the trace data.

Example 7: Reading character format trace headers
CPP can read from character header words as well as write to them. The ProMAX

process called Floppy Input reads data from SEG-2 format files2. It places the filename in
the trace header called CFILE and numbers field-file-identifiers (FFIDs) sequentially,
regardless of any file number implicit in the filename. The following Perl code can be
used to extract the numeric portion of CFILE and place it in the FFID. This example
assumes that filenames have the form �ABC0000.DAT� where �0000� is the desired file
number:

sub onTrace {
 $cfile = gethdr(’CFILE’);
 $ffid = substr($cfile,3,4);
 puthdr(’FFID’,$ffid);
}

We use Perl�s substr function to extract the portion of the filename that contains the
numbers. The code, substr($cfile,3,4) means �from $cfile, extract 4 characters
starting with the character at position 3� (Perl considers the first character position to be
zero). The following table illustrates the result of this function.

File name FFID
ABC1001.DAT 1001
ABC1003.DAT 1003
ZZZ1311.DAT 1311

2 It is the author�s belief that Floppy Input is a misnomer, and the process should be called SEG-2 Input.

Bland

8 CREWES Research Report � Volume 14 (2002)

Example 8: Exporting trace headers to a spreadsheet
It is often helpful to export trace header information into a spreadsheet package for

detailed analysis or graphing. Almost all spreadsheet programs read comma-separated-
value format files (CSV files). The following example shows how to create a CSV file
from trace headers:

open(OUT,”>geom.csv”) || die ”Can’t write geom.csv $!”;
print OUT ”FFID,CHAN,SOU_X,SOU_Y,REC_X,REC_Y\n”;
sub onTrace {
 $ffid = gethdr(’FFID’);
 $chan = gethdr(’CHAN’);
 $sou_x = gethdr(’SOU_Y’);
 $sou_y = gethdr(’SOU_X’);
 $rec_x = gethdr(’REC_X’);
 $rec_y = gethdr(’REC_Y’);
 print OUT ”$ffid,$chan,$sou_x,$sou_y,$rec_x,$rec_y\n”;
}

The above example opens the output file geom.csv outside the onTrace function so that
it is opened only once. The last line of the onTrace function prints all the header values
with a comma separating them. The final \n adds a carriage-return to the end of each
line. After running CPP, the output file would resemble the following listing:

FFID,CHAN,SOU_X,SOU_Y,REC_X,REC_Y
1,1,517.23,-23.32,17.9,-21.31
1,2,517.23,-23.32,27.3,-20.19
1,3,517.23,-23.32,38.1,-15.92
1,4,517.23,-23.32,47.83,-22.85
…etc…

If the above file was opened in a spreadsheet program the header values are easy to see:

WORKING WITH ENSEMBLES
Up to this point, all trace operations have been performed a trace at a time. Although

CPP allows access the header values of previous trace, it can be useful to look ahead at
the next trace in an ensemble.

CPP can operate in ensemble mode, where an ensemble of traces become accessible
during each call to the user�s work subroutine. When operating in ensemble mode, the
work subroutine must be named onEnsemble. In addition, the gethdr and puthdr
functions access trace headers as arrays instead of scalars.

The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 9

Example 9: Assigning trace headers in array mode
To illustrate the most basic array operations we will perform some receiver location

renumbering. The following example assumes that ensembles of five traces are
processed. It will assign the receiver surface location to each of the five traces in each
ensemble:

sub onEnsemble {
 @stations = (101, 102, 103, 104, 105);
 puthdr(’REC_SLOC’, @stations);
}

This example uses Perl arrays. Perl array variables begin with an ampersand. The array is
loaded with values by assignment to a parenthesized list of numbers.

Example 10: A simple array operation with an ensemble of trace headers
The following example reverses all the channels in a shot gather. If the channels were

originally sequenced 1,2,3,4,5, the code in the example would reassigned the channels in
the sequence 5,4,3,2,1:

sub onEnsemble {
 @chans = gethdr(’CHAN’);
 @reverseChans = reverse(@chans);
 puthdr(’CHAN’, @reverseChans);
}

The reverse function is a Perl built-in operator. It accepts an array of values as input,
and returns the same array in reverse order.

Bland

10 CREWES Research Report � Volume 14 (2002)

Example 11: Adjusting an ensemble of trace headers
A more realistic problem to solve is one in which we first scan all values of a

particular trace header in an ensemble. Then, based on the scan, we apply a value to all
trace headers within the ensemble. The following example, designed for shot records,
computes the distance from each trace to the trace nearest the shot. There is a place in the
ROFFSET header word for each trace:

defhdr(’ROFFSET’,’R’,’Offset to receiver nearest the shot’);
sub onEnsemble {
 @offset = gethdr(’OFFSET’);
 $minOffset = 9999999;
 foreach $o (@offset) {
 if ($o < $minOffset) {
 $minOffset = $o;
 }
 }
 for $i (0..$NTRACES-1) {
 $roffset[$i] = $offset[$i] - $minOffset;
 }
 puthdr(’ROFFSET’,@roffset);
}

The example above introduces two forms of the Perl for loop. The first for loop sets the
variable $o to each of the values in the @offset array. The second for sets the variable
$i to the sequence of numbers from 0 and $NTRACES-1 (inclusive). We also introduce
the method of accessing an element of an array. When referring to all elements of the
offset array, we use @offset. To access a single element of the array we write
$offset[5] (in this case, giving us the fifth element). Some readers may notice the
$NTRACES variable seems to come from nowhere. In fact, this variable is one of four
magic variables that are automatically available to Perl when running within CPP. The
following section provides more detail.

MAGIC VARIABLES
The CPP automatically defines some variables for use by Perl code:

$NUMSMP - number of samples per trace
$SAMPRAT - sample interval in units of milliseconds
$MAXDTR - the maximum number of traces per ensemble
$NTRACES - the number of input traces in the current ensemble

The $NUMSMP, $SAMPRAT, and $MAXDTR variables are all preset during the
initialization phase (outside onTrace or onEnsemble). The user�s initialization Perl code
may modify these values, thus altering the dataset parameters for all subsequent
processes in the ProMAX flow (for experts only). The $MAXDTR and $NTRACES
variables are only meaningful when CPP is operating in ensemble mode. In cases where
each ensemble has a different number of traces (such as when processing CDP gathers)
the $NTRACES variable will be set to the number of traces in the current ensemble.
Altering $NTRACES within an onEnsemble function alters the number of traces output

The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 11

by CPP for the current ensemble. For example, if one were writing a stack function with
CPP, the onEnsemble subroutine would set $NTRACES to 1, thus reducing an ensemble
of unstacked traces to a single stacked trace.

WORKING WITH SINGLE TRACES OF DATA
All examples to this point have dealt with trace header manipulation. CPP is also able to
access and modify trace data. This allows one to write complete data processing modules
in Perl using CPP.

Example 12: Reading sample data a trace at a time
When operating in trace mode, 1-D trace data are accessed via a standard Perl array:

*trace = traceData;
sub onTrace {
 for $i (0..$NUMSMP-1) {
 $trace[$i] = $trace[$i] * 5 - 2.5;
 }
}

The first line assigns the @trace array as the conduit for trace data. The * character that
appears on line 1 is called a glob. It only needs to be used this one time, when calling the
traceData function. After this assignment, the first sample is accessed using
$trace[0], the second as $trace[1], etc. Changes to sample values are automatically
propagated to the remainder of the ProMAX flow. To iterate through all the samples, the
for loop makes use of the $NUMSMP magic variable. It contains the number of samples
per trace.

The traceData function (line 1 of this example) does not look like a function, but it is
one. In Perl, functions that require no parameters look like bare words. It is a common
mistake to use the C syntax (empty parentheses after the function name) when calling
functions without arguments.

Bland

12 CREWES Research Report � Volume 14 (2002)

Example 13: Simple 1D signal processing
There are situations when overwriting the input trace can cause problems. The following
example implements a simple smoothing filter:

*inTrace = traceData('<');
*outTrace = traceData('>');
sub onTrace {

for $i (1 .. $NUMSMP-2) {
$outTrace[$i] = $inTrace[$i-1] +
$inTrace[$i] +
$inTrace[$i+1];

}
special handling of the first and last samples
$outTrace[0] = $inTrace[0];
$outTrace[$NUMSMP-1] = $inTrace[$NUMSMP-1];

}

This 3-element smoothing filter would not work with a single trace data array because the
input trace must remain intact until the smoothing operation is complete. By passing the
‘<’ or ‘>’ argument to the traceData function, we define arrays which are designated
as input-only and output-only respectively.

WORKING WITH ENSEMBLES OF TRACE DATA
When operating in ensemble mode, CPP can access trace data for the whole ensemble

via a two-dimensional array3. The same traceData function is used to define the array
that serves as a data conduit. The left-most array index determines the trace. The right-
most array index determines the sample.

The following example reads and writes data to a two-dimensional array of trace data.
This particular example computes the DC offset for an ensemble of traces, and subtracts
that offset from all trace values.

3 Two-dimensional arrays are actually arrays of array-references.

The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 13

*trace = traceData;

sub onEnsemble {
 $sum = 0;
 for $t (0..$NTRACES-1) {
 for $i (0..$NUMSMP-1) {
 $sum = $sum + $trace[$t][$s];
 }
 }
 $dcShift = $sum / ($NTRACES * $NUMSMP);
 for $t (0..$NTRACES-1) {
 for $i (0..$NUMSMP-1) {
 $trace[$t][$s] = $trace[$t][$s] - $dcShift;
 }
 }
}

FUTURE WORK
CPP is a new module for ProMAX. The latest version reads and writes trace headers

and trace data. It currently operates as a filter, operating in trace mode or ensemble mode.
We hope to enhance CPP by adding an input tool mode of operation. In this mode, CPP
can be a trace generator, allowing it to import data directly into ProMAX4. Another
planned enhancement is to allow access to the ProMAX database and parameter tables.

To benefit fully from the features of CPP, the user requires some knowledge of Perl.
Though nearly 1 million programmers already know Perl (O�Reilly, 2002), few
geoscientists are currently familiar with it. Enhancements to the CPP documentation, in
conjunction with the evolution of a cookbook should help encourage usage of CPP.

CONCLUSION
Through the presentation of several examples, we have introduced some of the

features and capabilities of CPP. CPP is still evolving, but it has already proven useful to
the researchers within CREWES. CPP�s rapid-development capabilities have made it
popular for handling a wide variety of ProMAX tasks. We believe this program has a
promising future as a practical and versatile problem-solving tool.

REFERENCES
Christiansen, T. and Nathan, T., 1999, Perl FAQ, http://www.perldoc.com/perl5.6/pod/perlfaq.html
Schwartz, L.R. and Phoenix, T., 2001, Learning Perl: O�Reilly and Associates
Wall, L. and Schwartz, R.L., 1991, Programming Perl: O�Reilly and Associates

4 There is currently a work-around for this missing feature: generate synthetic traces, then replace them
with data from an external source

Bland

14 CREWES Research Report � Volume 14 (2002)

APPENDIX A - FUNCTION REFERENCE

defhdr

Synopsis
defhdr($hdrname,$format,$description);

Defines new trace headers within the flow. If the trace header already exists, the
existing definition is used. If a header definition conflicts with an existing definition
due to a mismatched data type, and error occurs.

Parameters

$hdrname is the header�s name. Trace header names should be no longer than 8
characters. Capitalization is ignored.

$format defines the format of the trace header. Possible values are:

’R’ Real value (single precision)
’D’ Real value (double precision*)
’I’ Integer value
’C’ Character value

The format of character headers may optionally include a length (the default is 4
characters). For example, define a character trace header of length 12 characters
specify a format of �C12�. Character lengths are always rounded-up to multiples of 4.
Avoid defining long character headers, as they may exhaust the overall supply of
trace header memory.

*Double precision headers are currently not implemented in most ProMAX modules.
Their use is not recommended for compatibility reasons.

$description is the header�s description. The description can be up to 32
characters in length.

The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 15

gethdr

Synopsis
$value = gethdr($hdrname);

@values = gethdr($hdrname);

In a trace-a-time mode, gethdr gets a trace header value from the current trace.

In ensemble mode, gethdr gets an array of trace headers for all traces in the current
ensemble.

Returns undef if the specified header name does not exist.

Parameters

$hdrname is the name of the requested trace header.

Bland

16 CREWES Research Report � Volume 14 (2002)

puthdr

Synopsis
puthdr($hdrname, $value);

puthdr($hdrname, @values);

Puts a new value in a trace header. In trace mode, a single value is stored in the
named header for the current trace. In ensemble mode, the array of values is stored in
the current ensemble�s traces.

If $hdrname does not exist, an error occurs.

Parameters

$hdrname is the name of the header to be updated.

$value is the value to place in the current trace header (trace mode).

@value is an array of header values to place in the current ensemble�s trace headers
(ensemble mode).

The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 17

traceData

Synopsis
*array1d = traceData($direction)

*array2d = traceData($direction)

Designates an array as a conduit for trace data. The returned value is a Perl �glob�. In
trace mode, the glob allows access to a one-dimensional array of trace data indexed
by sample. In ensemble mode, the glob allows access to a two-dimensional array of
trace data indexed by trace and sample (in that order).

Parameters

$direction (Optional).

If direction is �<� the returned value can be used to access input data. Any alterations
to the associated array will be ignored.

If the direction is �>� the returned value can be used to access output data. The data
stored within the associated array will be used as the source of output data to the
remainder of the ProMAX flow.

If no direction is specified, the returned value can be used to access input data, and it
will also be used as the source of output data to the remainder of the ProMAX flow.

If insufficient output data is available (if the array doesn�t match the input array�s
dimensions) the output data is padded with zeros.

The number of traces output (when in ensemble mode) is dependent on the
$NTRACES magic variable. To reduce the number of traces output, decrease
$NTRACES. $NTRACES should never be increased beyond the value of $MAXDTR. The
value of MAXDTR is determined by the maximum ensemble size (specified in the
ProMAX flow�s input tool).

Bland

18 CREWES Research Report � Volume 14 (2002)

Magic Variables

$NUMSMP - number of samples per trace
$SAMPRAT - sample interval in units of milliseconds
$MAXDTR - the maximum number of traces per ensemble
$NTRACES - the number of input traces in the current ensemble

The fusion of ProMAX and Perl

 CREWES Research Report � Volume 14 (2002) 19

APPENDIX B � ADDITIONAL EXAMPLES

Example B1: Modify a number of trace headers at the same time
In Perl, there�s more than one way to do it. Here is one novel approach:

sub onTrace {
 %coordShift = (’REC_X’ => 82817,
 ’REC_Y’ => 6552512,
 ’SOU_X’ => 82817,
 ’REC_Y’ => 6552512,
 ’CDP_X’ => 82817,
 ’CDP_Y’ => 6552512);
 foreach $hdr (keys %coordShift) {
 puthdr($hdr, gethdr($hdr) – $coordShift{$hdr);
 }
}

Example B2: Import data from a text file into a trace header
Here we open a file that contains three (white-space separated) columns: CDP, CDP_X
and CDP_Y. Next, we read each line of the file, and built two associative arrays of
CDP_X coordinate indexed by CDP numbers. Perl will automatically work out the array
sizes for us. Finally within our onTrace function, we lookup and assign the CDP_X and
CDP_Y based on the trace's CDP:

open(FILE, "<cdpcoords.txt") || die "Error $!";
while (<FILE>) {
 ($cdp, $cdp_x, $cdp_y) = split(' ');
 $cdp = int($cdp);
 $cdpxByCdp{$cdp} = $cdp_x;
 $cdpyByCdp{$cdp} = $cdp_y;
}
close(FILE);

sub onTrace {
 puthdr(’CDP_X’,$cdpxByCdp{$CDP});
 puthdr(’CDP_Y’,$cdpyByCdp{$CDP});
}

