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Characteristics of P, SV, and SH wave propagation in an 
anisotropic medium 

Amber C. Kelter and John C. Bancroft 

ABSTRACT 
Two methods of approximating phase and group velocities in an anisotropic medium 

are explored. Wavefront shapes and expected diffractions from a scatterpoint are 
investigated. It was found that the popular approximations given by Thomsen in 1986 
lose accuracy when compared to more exact solutions; this is especially evident for the 
case of SV-waves. 

INTRODUCTION 
Most models in exploration seismology presume that the earth is isotropic — that is, 

seismic velocities do not vary with direction. However, individual crystals and most 
common earth materials are observed to be anisotropic with elastic parameters that vary 
with orientation. Thus, it would be surprising if the earth was completely isotropic. It 
seems that seismologists have been somewhat cautious in considering the full effects of 
anisotropy. There are many reasons for this, including the greater computational 
complexity and lack of computing power, the difficulty of inverting data for a larger 
number of elastic constants, and in some cases, a lack of compelling evidence for the 
existence of anisotropy. However, lately it has become apparent that anisotropy is evident 
in many parts of the earth and therefore anisotropic studies are becoming an increasingly 
important aspect of seismological research (Shearer, 1999). 

REVIEW OF ANISOTROPY 
Hooke’s law was formulated by Love (1927). When an elastic wave propagates 

through rocks the displacements are in accordance with Hooke’s Law namely the stress 
and strain are related through a constitutive relation that can be written as  

 klijklij ec=σ , (1) 

where ijσ  is the stress tensor, ijklc  is the elastic tensor and kle  is the strain tensor. Both 
the stress and the strain are symmetric. Using the Voigt recipe (Musgrave, 1970) the 
fourth-order stiffness tensor can be rewritten as a second-order symmetric matrix: 

 αβccijkl ⇒ , (2) 

where α⇒ij  and β⇒kl . 
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In an isotropic medium, the elastic tensor is written as  
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The components of the isotropic elastic tensor are related to the lamé parameters λ and 
µ  by 

 
,233 µλ +=c
 (4a) 

and 

 µ=44c . (4b) 

The two Lamé parameters completely describe the linear stress-strain relation within an 
isotropic solid. For a transverse isotropic medium with a vertical symmetry axis (VTI 
medium), the elastic tensor is written as (Thomsen, 1986) 
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The tensor now has five independent elastic constants that describe the medium. The 
introduction of three new components or elastic moduli is significant. These elastic 
components are related to the anisotropic or Thomsen’s parameters and are developed 
below. 

PHASE VELOCITY 
The phase velocities for three mutually orthogonal polarizations can be described in 

terms of the elastic constants (Thomsen, 1986). Daley and Hron (1977) give expressions 
for the phase velocities in terms of the elastic tensor components. The phase velocity of a 
compressional wave is 
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The phase velocity of a shear wave with a vertical polarization direction is expressed as 
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and the shear velocity with horizontal polarization is expressed as 
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where ρ is the density and the symbol )(θD  denotes 

 
.}sin])(4)2[(

sin)]2)(()(2[2){()(

2
142

4413
2

443311

2
4433114433

2
4413

2
4433

θ

θθ

ccccc

cccccccccD

−+−+

+−+−−−+−=
 (9) 

It is convenient to define the non-dimensional anisotropic parameters in terms of the 
elastic tensor components and express Equations (6) to (8) in terms of these. From 
Thomsen (1986), the anisotropic parameters are defined as 
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If the velocities in the direction of the symmetry axis are defined as 

 ρα 33
0

c=
 (13) 

for the P-wave velocity and as 

 ρβ 44
0

c=  (14) 

for the S-wave velocity then Equations (10)–(14) now constitute five linear equations 
with five unknowns that are solved such that 
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Substitute these solutions into Equations (6)–(8). Developing into Taylor series and 
neglecting higher order terms we get solutions (Equations (20a), (21a), and (22a)) for the 
phase velocities that are valid under the condition of weak anisotropy. Equations (20b), 
(21b) and (22b) show results without simplifications (Daley and Hron, 1977). The 
accuracy of these approximations is investigated below: Figures 3, 6, and 9. Note for 
simplicity group velocity are only going to be calculated from the Taylor-series 
approximations (Equations (20a), (21a) and (22a)). 

 )sincossin1()( 422
0 θεθθδαθ ++=Pv , (20a) 

( ) )20(,1

1

sin14

1

cossin2411
2
1sin1)( 2

2

2

4
2

2

2

2

22

2

2
2 bvp

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

+
+

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++=

α
β

θε
α
βε

α
β

θθεδ
α
βθεαθ

 

 )cossin)(1()( 22
2
0

2
0

0 θθδε
β
αβθ −+=SVv , (21a) 

( ) )21(,1

1

sin14

1

cossin2411
2
1sin1)( 2

2

2

4
2

2

2

2

22

2

2
2

2

2

bvsv

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

+
+

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+=

α
β

θε
α
βε

α
β

θθεδ
α
βθε

β
αβθ

 



Wave propagation in an anisotropic medium 

 CREWES Research Report — Volume 16 (2004) 5 

and 

 )sin1()( 22
0 θγβθ +=SHv , (22a) 

 θγβθ 2
0 sin1)( +=SHv . (22b) 

GROUP VELOCITY 
The x and y axes are equivalent for a transversely isotropic medium, therefore we can 

confine ourselves to the x-z plane in the discussion of a VTI medium. Figure 1 depicts the 
phase angle,θ , the ray or group angle, φ , and the phase velocity, )(θv , and the group 
velocity, )(φV . The group velocity is the velocity of the ray and represents the direction 
of energy transport. In contrast, the phase velocity is the local velocity of the wavefront 
in the direction perpendicular to the wavefront and is the velocity used when talking 
about the slowness or ray parameter, p. 

z

x

φ
θ

Wavefront

Source

z

x

φ
θ

Wavefront

Source

FIG. 1. Depiction of the phase and group velocities. Note that the angle is measured with respect 
to the vertical axis (symmetry axis). The group velocity is the direction of energy propagation 
while the phase velocity is the local velocity of the wavefront. 

For a plane wave, the phase velocity is described as 
k

v ω
=  where ω is the angular 

frequency and k is the wavenumber. If )ˆcosˆ(sin 31 xxkk θθ +=  then the phase velocity as 
function of the angle is given by 

 )ˆcosˆ(sin)( 31 xx
k

v θθωθ += . (23a) 

However, it is the group velocity, the velocity at which the energy propagates, that would 

be measured at a geophone. The group velocity is defined as 
dk
dV ωφ =)(  or in terms of 

the phase velocity as  
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FIG. 2. Depiction of the phase and group velocities used to define the group velocity from the 
phase velocity. 

From Figure 2 and Byun (1984) it is evident that  

 )cos()()( θφφθ −=Vv , (24)  
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Therefore, the magnitude of the group velocity can be defined in terms of the phase 
velocity and the phase angle. In order to solve for the group angle, we need to apply the 
trigonometric identity in Equation (27) to Equation (25) 
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Upon solving for the group angle,φ , we get a solution  
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We have now successfully defined the group velocity and its angle. 
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WEAK ANISOTROPIC APPROXIMATION 
Thomsen (1984) introduced an approximation to the methods described above to go 

from phase velocity (Equations (20a), (21a) and (22a)) to group velocity and 
corresponding group angle. He stated that a sufficient linear approximation is 

 )()( θφ vV = , (29) 

and that the group angle could be solved from the linear approximation 
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This leads to group angles indicated by Equations (31)–(33) for the P and two S waves 
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 )21)(tan()tan( γθφ +=SH . (33) 

Solving for the group velocity using Equation (26) we get a solution that is quadratic in 
anisotropy. If the higher order terms are neglected the linear approximation goes as  
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thereby validating Equation (29). The above formula states that if the phase velocity and 
phase angle are given, the approximate group angle can be solved for from Equations 
(31)–(33) and the approximate magnitude of the group velocity can be solved using 
Equations (20a), (21a), and (22a). 

ANISOTROPY PARAMETERS 

For most sedimentary rocks, the parameters ε, γ, and δ are of the same order of 
magnitude and usually much less than 0.2; further for most rock types the anisotropy 
parameters are positive (Thomsen, 1986). However, it is not unheard of to have negative 
values for the anisotropy parameters. In the modelling that follows the parameters are 
pushed to their limits to explore the boundaries of “common” rock types. When the 
special case of horizontal incidence is considered, we can develop a physical meaning for 
the anisotropic parameters ε and γ. If, in equations (20a) and (22a), we let the angle equal 

90 degrees and solve for the parameter, we obtain 
0

0

α
ααε −

= h  and 
0

0

β
ββγ −

= h , where 

hα  and hβ  are the horizontal P- and S-wave velocities respectively. In particular these 
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parameters are a measure of the anisotropic behaviour of a rock and are a calculation of 
the fractional difference between the horizontal and vertical velocities. It is much more 
difficult to gain a physical understanding of the third parameter other than to say that, it is 
a critical factor that controls the near vertical response, and that it determines the shape of 
the wavefront. 

VALIDITY OF THE WEAK ANISOTROPIC APPROXIMATION 
Comparison of the approximations given by Thomsen (1986) to the more accurate 

equations for the group velocity shows that the approximation is only valid out to about 
30 degrees for incident angle of SV-waves and appears to always be valid for the P and 
SH-wave. Figures 3, 4, 6, 7, 9, and 10 show the phase velocity and the group velocity 
calculated from the more exact expression and from the anisotropic approximation for the 
three different wave polarizations. The figures demonstrate the shape of the expected 
wavefront and are essentially the velocity plotted in polar format. 
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P Phase Wavefront: ε = 0.2  δ = -0.2 to 0.2
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δ = 0.2  Taylor
δ = -0.2 Exact
δ = -0.1 Exact
δ = 0.1  Exact
δ = 0.2  Exact

 

FIG. 3. P-wave phase wavefront. Epsilon is constant at 0.2 and delta varies from -0.2 to 0.2. The 
isotropic response is shown as the thick dashed black line. It is seen that the exact expression 
(Daley and Hron, 1977) and the Taylor series truncated expression (Thomsen, 1986) are very 
similar. 

Figure 3 reveals the expected wavefront shape for the P-wave phase velocity. Epsilon 
(ε) is equal to 0.2 and delta (δ) is varied from -0.2 to 0.2. When δ=ε we get what is 
commonly referred to as elliptical anisotropy (Yilmaz, 2001). As one might infer, the 
wavefront in this case is elliptical in shape. When delta is negative, we get a crossing 
over with respect to the isotropic response which is shown, indicated by the thick dashed 
black line. Also note that the horizontal P-wave velocity is always greater than the 
vertical P-wave velocity. The more exact expression for the phase velocity response is 
nearly identical to the approximated Taylor-series expression and hence the Taylor series 
is a good approximation to the more complicated expression. As mentioned above, only 
the Taylor series response is considered when calculating group velocities. 
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FIG. 4. P-wave group wavefront. Epsilon is constant at 0.2 and delta varies from -0.2 to 0.2.  
Upper image is calculated from the more exact expressions while the lower image is calculated 
from the anisotropic approximation. 

Figure 4 shows the P-wave group wavefront. Again, when ε=δ we see an elliptical 
response. The upper image is the response from the more exact expression while the 
lower image is the response to the approximated expression. Inspection of the two shows 
that they are vastly similar and that the approximated expression appears to be valid at all 
incident angles; a closer look is seen in Figure 5 where the difference has been taken 
between the more exact expression and its approximation. 
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FIG. 5. The difference between the more exact expression for the P-wave group velocity and the 
approximation for the P-wave group velocity as a function of angle. 

As the value of delta deviates more from zero, the approximation becomes less 
accurate. For positive delta values, the greatest deviation occurs at relatively smaller 
incident angles as the value of delta increases in magnitude. When the delta value has a 
negative sign, the angle of greatest deviation also shifts to a slightly smaller incident 
angle for delta values that are greater in magnitude. Further, when the value is negative, 
we see a difference as large as 88 metres/second at about a 50-degree incident angle for a 
delta value of -0.2. In actuality, this only corresponds to an approximately 2.77% 
deviation in velocity for the model used here. 



Wave propagation in an anisotropic medium 

 CREWES Research Report — Volume 16 (2004) 11 

-2000 -1500 -1000 -500 0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

SV Phase Wavefront: ε = 0.2  δ = -0.2 to 0.2
Isotropy
δ = -0.2 Taylor
δ = -0.1 Taylor
δ = 0.1  Taylor
δ = 0.2  Taylor
δ = -0.2 Exact
δ = -0.1 Exact
δ = 0.1  Exact
δ = 0.2  Exact

 

FIG. 6. SV-wave phase wavefront. Epsilon is constant at 0.2 and delta varies from -0.2 to 0.2. 
There is an obvious difference between the exact response and the approximated response for 
negative delta values. 

For the SV-wave phase velocity, we see that negative delta values cause a significant 
bulging response at around 45 degrees with respect to the isotropic response; and, 
interestingly, it is observed that the response, whether the delta value is positive or 
negative, is always greater than the isotropic response. There is an immediate difference 
between the exact expression and the Taylor series expression for negative delta values, 
showing that the approximation loses validity for the SV-wave; however, as mentioned 
above, only the Taylor series response is considered when calculating group velocities as 
this is the formulation that is commonly. 
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FIG. 7. SV-wave group wavefront. Epsilon is constant at 0.2 and delta varies from -0.2 to 0.2. The 
upper image is calculated from the more exact expressions while the lower image is calculated 
from the anisotropic approximation. 

The more exact expression for the SV-wave group wavefront response is seen in the 
top image in Figure 7, and the approximation in the lower image. For the SV-waves, we 
observe that the approximation seems to fail at about 30 degrees or so; this is also evident 
in Figure 8. Most notable is that the cusps or triplications that are sometimes seen in the 
more exact expression are not picked up by the approximation. The most extreme 
deviation is observed at about 70 degrees where, for a delta value of -0.2, the velocity 
difference is over 700 metres/second, corresponding to a 44% error in the calculation of 
the group velocity at this point. The difference between the more exact and approximate 
is seen in Figure 8. 
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FIG. 8. The difference between the more exact expression for the SV-wave group velocity and 
the approximation for the SV-wave group velocity as a function of angle. 

Examination of Figure 8 tells us that negative delta values produce far less accurate 
results than positive delta values, and that, at an angle of roughly 60 degrees, the 
approximation is nearly identical to the more exact solution. As the magnitude of a 
negative delta value decreases, the point of minimum accuracy corresponds to a smaller 
angle. 
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FIG. 9. SH-wave phase wavefront. Gamma varies from -0.2 to 0.2. The exact expression and the 
truncated Taylor-series approximation are similar. 

In the SH-wave phase velocity case, we observe that negative gamma values produce 
results that are smaller that the isotropic case, while positive values produce results that 
are larger than would be found in the isotropic case. For the SH-wave the result is always 
elliptical. The exact response and the Taylor series response exhibit nearly identical 
characteristics. Thus the Taylor series is a good approximation to the more complicated 
expression. As mentioned above, only the Taylor series response is considered when 
calculating group velocities. 
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FIG. 10. SH-wave group wavefront. Gamma varies from -0.2 to 0.2. The upper image is 
calculated from the more exact expressions, while the lower image is calculated from the 
anisotropic approximation. 

Similar trends are observed for the SH-wave group velocities as are observed for the 
SH-wave phase velocity. On first inspection, the results of the more exact (Figure 10, 
top) and approximation (Figure 10, bottom) look similar. Figure 11 shows a more in-
depth look at the difference between the two results. 
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FIG. 11. The difference between the more exact expression for the SH-wave group velocity and 
the approximation for the SH-wave group velocity as a function of angle. 

The approximation always gives an answer that is larger relative to the more exact 
solution. The largest deviation is seen at 75 degrees. For a delta value of -0.2, the velocity 
is in error by 43 m/s; this corresponds to a difference of 3.2%. The SH-wave 
approximation will produce adequate results for all incident angles unlike the SV-wave 
approximation. 

In all cases, it is the magnitude of the delta or gamma value that determines the 
inaccuracy of the approximation, with values that are greater in magnitude creating less 
accurate results. Negative values always produce more inaccurate results. Both of the 
solutions for the group velocity converge at zero and ninety degrees of incidence. This 
again is consistent with all three possible polarizations. 

FROM GROUP VELOCITY TO DIFFRACTIONS 
The group velocity at a certain incident angle can be used to calculate the two-way 

traveltime to a scatterpoint a certain depth. Once the two-way traveltime is found, the 
expected diffraction shape from the scatterpoint can be put forward (see Figure 12). 
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FIG. 12. If the group velocity as a function of incidence angle is known, the two-way traveltime to 
a scatterpoint at depth can be calculated. The two-way traveltime can be used to predict the 
diffraction that would be expected from the scatterpoint. 

The expected diffraction shapes from a scatterpoint located at a depth of 500 metres 
was calculated for the three different wave polarizations and are seen in Figures 12–15. 
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FIG. 13. P-wave diffractions from a scatterpoint located at a depth of 500 metres. The top part is 
the more exact solution, while the bottom part is calculated from the approximation. The left hand 
side has been calculated out to 45 degees, while the right-hand side has been calculated out to 
30 degrees for the incidence angle. 

Both images in Figure 13 suggest that hyperbolic moveout could be applied, as both 
the more exact solution (top) and the approximation (bottom) produce results that appear 
to be hyperbolic in shape. The left-hand side of the diffraction has been calculated out to 
45 degrees while the right hand side has been calculated to 30 degrees. The reasons for 
doing this will become obvious shortly. Note the slight difference in the two methods at 
500 metres, where one can see that the approximation is deviating from the more exact 
solution. 
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FIG. 14. Expected SV-wave diffraction for a scatterpoint at 500 metres. The top image is 
calculated from the more exact solution and the bottom from the approximation. The left-hand 
side has been calcultated out to 45 degees while the right-hand side has been calculated out to 
30 degrees for the incidence angle. 

Inspection of Figure 14 suggests that the anisotropic approximation will not allow for 
conventional hyperbolic moveout to be applied. On the other hand, the more exact 
solution exhibits a nearly hyperbolic response to a scatterpoint at depth. Focusing on the 
top image we see that the result is roughly hyperbolic out to 30 degrees. There is a slight 
deviation at the tip when delta = -0.2, but recall that this value is on the border of 
strong/weak anisotropy and the methods presented in this paper are relevant only under 
weakly anisotropic conditions. The response when the delta values are all positive for the 
more exact solution suggests that the response is hyperbolic all the way out to 45 degrees. 
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FIG. 15. Diffractions for a scatterpoint from the SH-wave. All responses for the SH-wave are 
hyperbolic in shape. The left-hand side has been calculated out to 45 degees while the right-hand 
side has been calculated out to 30 degrees for the incidence angle. 

Figure 15 shows that the expected diffraction from a scatterpoint at depth for the SH-
wave will produce results that are hyperbolic in shape and consequently traditional 
processing can still be applied to this case. The results are valid for hyperbolic moveout 
all the way out to 45 degrees. 

Expected diffractions from converted-wave data is also modelled for a scatterpoint 
located at 500 metres. A ray emitted as a P-wave with a phase angle θp from the surface 
reflects as an S-wave with angle θs . The two angles are related by Snell’s law 

 
s

s

p

p

vv
p θθ sinsin

== , (35) 

where p is the ray parameter. Note that the subsurface area illuminated by this ray differs 
from the midpoint between the source and receiver that would have been highlighted in a 

PP survey by a distance that is dependant on 
s

p

V
V

G =  (Tessmer and Behle, 1988). Thus 

the reflection point can not be determined with geometrical tactics. PS data-processing is 
more critically dependant on physical properties than is PP data-processing.  
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FIG. 16. Depiction of a PS survey. The surface area highlighted is no longer equivalent to the 
source receiver midpoint, but is dependent on Vp/Vs. 

The algorithm for determining expected diffraction shapes of converted waves (C-
waves) is such that the P-wave part of the solution is determined similarly to the PP case. 
The phase angle and velocity corresponding to the first leg of the solution are then used 
to calculate the ray parameter. The slowness parameter is next calculated for a range of 
shear phase angles, and a matching scheme implemented to choose the best angle such 
that the ray parameter is preserved. The group angle and velocity are calculated and the 
traveltime for the second leg of the C-wave determined. Results are seen in Figure 17. 
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FIG. 17. Expected diffraction shapes for converted waves from a scatterpoint at located at 500m 
 
Inspection of Figure 17 shows, as expected, that the diffraction from a scatterpoint at 500 
metres is asymmetrical and rough. 
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NON-HYPERBOLIC MOVEOUT 
It is well understood that, in the presence of anisotropy, the traveltimes of waves 

reflected from a horizontal interface form a non-hyperbolic curve. The short-spread 
moveout velocity is not equal to the vertical rms velocity as in the isotropic case. For the 
transverse isotropic case, the moveout velocities depend on the vertical velocities and 
Thomsen’s parameters. 

Moveout velocities 

 
FIG. 18. Conventional reflection survey. The distance that the down-going wave travels is noted 
on that ray. 

 

If a conventional reflection survey in a homogeneous anisotropic elastic medium is 
considered (Figure 18), the traveltime can easily be solved for from the trivial formula 
given below 
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where τ is the vertical (zero-offset) two-way traveltime, x is the source receiver offset 
and t is the traveltime from source to reflector to receiver. When 2t  is solved for, we 
obtain 
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Because Equation (37) is dependent on φ , it plots as a curved line in the 22 xt −  plane. 
The slope of this can be solved for 
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This can be further expressed as (Thomsen, 1986) 
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Normal-moveout velocity is defined using the initial slope of this line, where 

2

2
lim

0
2 )(

dt
dxV xnmo →=ψ  and ψ  is the dip angle of the reflector — in our case, 0. The ray 

parameter can be incorporated into this equation to ease its computational complexity, 
where  
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where h = x/2 or the half-offset of the source and receiver and p is the ray parameter 
(Tsvankin, 1995). If we let 0z be the depth of the zero-offset reflection point, then 

)tan(0 φzh = , Equation (40) becomes 
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To evaluate this equation, we use the general relations between the group and phase 
velocities that were developed in the group velocity section of this paper. From Equation 

(28), we see that the derivative 
dp

d )tan(φ  may be written as 
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Again referring to Equation (28), we see 
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and since vp /)sin(θ= , 
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If we let φφ cos)(
2
1 tVzo = , and use the expression for the group velocity in Equation 

(23b), and recall that the phase angle θ  for the zero-offset ray is equal to the dip angle 
ψ , 0z becomes 
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Substituting Equations (45) and (44) into (41), we obtain a formula for the NMO velocity 
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where the derivatives of the phase velocity are evaluated at the dip angle ψ  of the 
reflector. Difficulties are expected to arise when implementing this equation for shear 
waves that have cusps or singularities and are therefore multi-valued. The expression in 
Equation (46) is fairly straightforward because it only involves the phase velocity 
function and the components of the group velocity. Hence for a flat reflector 
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where ( )δεσ −= 2
0

2
0

s

p

V
V

 and is given by Tsvankin and Thomsen (1994). Note that σ 

reduces to zero for both isotropic and elliptically anisotropic media. The equations for 
NMOV  are equal to the rms velocity when the anisotropic parameters (σ, δ and γ) are all 

zero. As expected, the SH-wave is completely decoupled from the P and SV-waves. In a 
homogeneous transversely isotropic medium, as is the case that we dealt with in this 
paper, the wavefront of the SH-wave is always elliptical and therefore the SH-moveout is 
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purely hyperbolic. The reflection moveout for an SH-wave will however become non-
hyperbolic for a stratified medium. 

Reflection Traveltimes 
A common approximation for reflection moveouts is the Taylor-series expansion of 

the )( 22 xt  curve near 02 =x (Taner and Koehler, 1969). 
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and for the SV case, 
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A receiver spread is said to be short if it is not greater than the depth of the reflector. 
The short-spread moveout velocity is expressed through the inverse of 2A . Note that for 
all three wave types the short-spread moveout velocity is generally different from the true 
vertical velocity. The SV-wave short-spread moveout velocity is determined by the 
parameter σ , which may be much bigger than the anisotropy parameters because of the 
squared velocity ratio. Subsequently, the short-spread SV-wave moveout may be more 
distorted by anisotropy than the P-wave. Traditionally the Taylor-series expansion is 
truncated after the second term, where the effective stacking velocity is equal to the short 
spread limit.  

INTERMEDIATE SPREAD AND THE WEAK ANISOTROPIC MOVEOUT 
From Figure 18 it is seen that 
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where τ is now the two-way traveltime. Assuming the anisotropy is weak, and following 
Thomsen (1986), we can use the weak anisotropic approximation where we equate the 
group velocity at φ  to the phase velocity at θ . These approximations are seen in 
Equations (30) and (34) and have been developed earlier in this paper. For 2t , we now 
have 
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where the expression for the square of the velocity has been approximated through a 
binomial series. Expressing the group angle through x and z, and further linearizing in the 
anisotropy parameters, we get 
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where the offset has been normalized such that 
τVo

x
z
xx ==

2
. 

It is clear that Equation (52) has the form a Taylor series expanded in 2x . We then arrive 
at the final weak anisotropic approximation for the traveltime curve. 
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−=  for the P-wave. Note the similarities of 

4A  to the expressions in Equation (49a), where the first part of the term constitutes the 
approximation. In a similar fashion, formulas for the SV wave can be developed. 
Equation (53), as anticipated, is only valid under the condition of weak anisotropy. 

LONG-SPREAD REFECTION MOVEOUT 
The three-term Taylor series gives important information about the behaviour of 

nonhyperbolic moveout, but it loses accuracy with increasing offset and has an increasing 
error for zx 5.1max >  (Tsvankin & Thomsen, 1994). This should not be surprising since 
the equation reflects the shape of the traveltime curve near the zero-offset or at small 
incidence angles. A better analytical approximation may be formed if the traveltimes 
defined by the three-term Taylor series (Equation (49)) and weak anisotropy (Equation 
(53)) are amalgamated: 
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where 2A and 4A are the same as in Equation (49), 
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incidence velocity. The parameter A has been introduced to ensure the proper behaviour 
at large offsets. 

SYNTHETIC MOVEOUT RESULTS 
The traveltimes were calculated using three different methods — ray-tracing, the 

Taylor-series expansion for large spreads, and using a best-fit hyperbola. The value of ε  
was kept constant at 0.160 and the value of δ was allowed to vary. Figures 19 and 20 
show the results obtained for a horizontal reflector located at a depth of 500 metres. The 
solutions are calculated for incident angles that range from zero to forty-five degrees 
(note that the critical angle was not considered). 
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FIG. 19. P-wave two-way traveltime for a horizontal reflector located at a depth of 500 metres. 
The traveltime was calculated using three different methods as annotated on the graph. The red 
lines correspond to a δ = -0.2, the green line to δ = -0.1, the blue line to δ = 0.1, and the cyan line 
to δ = 0.2. ε was held constant at 0.160. 
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We see that the analytic solution best approximates the solution obtained by ray-tracing. 
For both the analytic solution and the best-fit hyperbola, the greatest deviation from the 
ray-tracing method is seen at the largest offsets and both approximations deviate more 
from the true solution when the δ  is negative. 
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FIG. 20. SV-wave two-way traveltime for a horizontal reflector located at a depth of 500 metres. 
The traveltime was calculated using three different methods as annotated on the graph. The red 
lines correspond to δ = -0.2, the green line to δ = -0.1, the blue line δ = 0.1, and the cyan line to δ 
= 0.2. ε was held constant at 0.160. Neither the analytic solution or the best-fit hyperbola are able 
to image past the first arm of the cusp. 

Similar observations are seen for the SV-wave case as for the P-wave case. An 
important limitation of both methods for the SV-wave is that neither the analytic solution 
nor the best fit hyperbola are able to simulate more than the first arm of the cusp that is 
evident in some SV-wave traveltime curves.  

On short spreads, the moveout remains close to hyperbolic even in the presence of 
anisotropy. The waves diverge from being hyperbolic with increasing δε −  and with 
decreasing δ. 

Examination of Figures 21 and 22 shows how these calculations behave for long 
offsets. 
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FIG. 21. P-wave traveltimes for long offsets calculated using three different methods — ray-
tracing, an analytic solution, and a best-fit hyperbola. The red lines correspond to δ = -0.2, the 
green line to δ = -0.1, the blue line δ = 0.1, and the cyan line to δ = 0.2. ε was held constant at 
0.160. 
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FIG. 22. SV-wave traveltimes for long offsets calculated using three different methods — ray-
tracing, an analytic solution, and a best-fit hyperbola. The red lines correspond to δ = -0.2, the 
green line to δ = -0.1, the blue line δ = 0.1, and the cyan line to δ = 0.2. ε was held constant at 
0.160. 

 

Relative to the hyperbolic fit, the analytical solution nicely fits the ray-tracing results for 
both P- and SV-waves. 

CONCLUSIONS 

It is the anisotropy parameter δ that completely dominates near-vertical propagation 
for P and SV-waves and thus this parameter is the most critical when considering seismic 
exploration. The equations governing the weak anisotropy approximation are simpler 
then the more complete set of equations but are not always accurate; this is especially 
evident in the SV-wave. Because of the power of today’s computers there is no excuse to 
use an approximation and all such programs should be developed with the more exact 
equations in mind so that one is not skimping on accuracy. 
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