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Poststack and prestack depth migrations using Hale’s 
extrapolator  

Saleh M. Al-Saleh, John C. Bancroft, and Hugh D. Geiger 

ABSTRACT 
Recursive wavefield extrapolation methods in the space-frequency domain are popular 

because they are powerful in handling strong lateral velocity variations. However, one of 
the problems of these methods is the instability of the extrapolation operator. Unstable 
operators tend to amplify the extrapolated wavefield at each depth step. 

The Hale’s method can design stable extrapolation operators. One of the advantages of 
Hale’s extrapolator is that it is fairly stable where it does not amplify the extrapolated 
wavefield at each depth step. The impulse response of Hale’s extrapolator and the 
poststack migration of Marmousi dataset show that it can handle lateral velocity 
variations but not the steeply dipping events. Hale’s extrapolator may be a good 
candidate for data that have moderate dips, but probably not for steeply dipping events. 

Some applications of Hale’s extrapolator in prestack depth migration with different 
imaging conditions are shown.  The different imaging conditions give different 
amplitudes of the same reflector. Only the deconvolution imaging condition can preserve 
the amplitude of the reflector. 

INTRODUCTION 
To derive the Hale’s extrapolator, we start with the 2-D scalar wave equation 
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After taking 2-D Fourier transform, Equation 1 becomes 

 
2

2
2      zk

z
ψ ψ∂

= −
∂

 (2) 

where 

 
2

2 2
2 .z xk k

V
ω

= −  (3) 

Equation 2 is just a 1D Helmholtz equation whose solution, for upgoing or downgoing 
waves, is 

 ( ) ( ), , , 0, .zik z
x xk z k z eψ ω ψ ω= =  (4) 

Note that ψ  is the wavefield representing pressure, ψ  represents its 2-D Fourier 
transform, t is the two-way travel time, and x and z are the horizontal and vertical 
coordinates.  So the wavefield at some depth z, ( ), ,xk zψ ω  can be obtained by 
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multiplying the recoded wavefield at the surface, ( ), 0,xk zψ ω= , by a phase shift 

operator, zik ze if the velocity is constant. This is the phase shift migration that was first 
introduced by Gazdag (1978). 

It is not immediately apparent how lateral velocity variations can be handled using the 
Gazdag phase shift method because the space coordinate has been Fourier transformed. 
As a result, extrapolation techniques for a laterally variable velocity field are usually 
formulated in the space-frequency domain (Gazdag 1980, Berkhout 1984, Holberg 1988, 
Hale 1991, and others) as a dip-limited approximation to the inverse Fourier transform of 
the phase shift operator. To handle lateral velocity variations, the extrapolator is varied 
with the local velocity of the computation grid. For example, the wavefield at 
depth= z z+ ∆ can at some x-location, can be computed by:  

(a) designing an operator in the frequency-wavenumber domain using the velocity 
of that output point, 

(b) applying an inverse Fourier transform to the extrapolator from the frequency-
wavenumber to the frequency-space domains , 

then applying this extrapolator in the xω −  domain as a convolution process between the 
extrapolator and the wavefield at depth=z. 

The extrapolator has to have a finite length, which means the inverse Fourier 
transform of the extrapolator from the frequency-wavenumber to the space-frequency 
must be truncated. Truncation with a boxcar in the space-frequency domain is equivalent 
to convolving the Fourier transform of the extrapolator with a sinc function, which is the 
Fourier transform of the boxcar. Since the amplitude and phase spectra of the extrapolator 
in the frequency-wavenumber domain have discontinuities at the evanescent boundary, 
convolving with a sinc function results in an overshoot at this boundary, “Gibbs 
Phenomena” (Figure 1). This truncated extrapolator is not stable, as the amplitude 
exceeds unity, and repeated applications of it will cause amplitudes greater than one to 
accumulate. 

There are different methods for designing explicit stable extrapolators such as the 
constrained least-squares method (Holberg, 1988), the modified Taylor series method 
(Hale, 1991), and the weighted least squares optimization (Thorbecke, 2004). 

In this report, Hale’s method for designing explicit stable extrapolation operators will 
be reviewed. One way to stabilize the extrapolator is also shown. The impulse response 
and the poststack depth migration of the Marmousi dataset will be used to evaluate the 
extrapolator. Some applications of the extrapolator in prestack depth migration with 
different imaging conditions are also shown. Using Hale’s extrapolator, the different 
imaging conditions are investigated to see how they handle the amplitudes of the 
reflectors. 
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FIG 1. Convolving the frequency-wavenumber spectrum of the (the top row) with a sinc function 
(the middle row) results in an overshoot at the evanescent boundary (bottom row). The dashed 
line shows the evanescent boundary.  

THEORY OF HALE’S EXTRAPOLATOR 
A brief review of Hale’s method is presented here. Let’s denote the desired phase shift 

operator by 

 ( ) ,zik zD k e ∆=  (5) 

where  
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Note that the quantities /x vω∆ and k have been normalized. The normalization of 
xz ∆∆ / and vx /∆ω uniquely determine the desired transform, )(kD . The transform 

)(kD is the same term as that applied in the phase-shift migration and can only handle 
velocity varying with depth. For a general inhomogeneous medium with significant 
lateral velocity variations, downward continuation can be carried out conveniently in the 

x−ω domain as a dependant convolution (Holberg, 1988).  

The symmetry of the desired transform, )(kD , with respect to k implies that the 
complex extrapolation filter coefficients, nh (the actual extrapolator in the x−ω  
domain), should be even. Specifically, we expect: nn hh =− . Therefore, the number of 
coefficients N should be odd, with the coefficient index n  bounded by 
( ) ( ) 2/12/1 −≤≤−− NnN . Due to the symmetry of nh , the filter can be specified by 

(N+1)/2 complex coefficients, where N denotes the number of complex coefficients 
needed to define the extrapolation filter. The Fourier transform of the extrapolation filter 
is defined by 
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Because of the symmetry of nh , 
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where 0nδ is the Kronecker delta function defined by 
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In Hale’s method, the coefficients of the filter are represented as a sum of M weighted 
basis functions: 
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where a good choice for the basis functions is 
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 ( )0
22 cos .mn m
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In Hale’s method, instead of determining ( ) 2/1+N complex filter coefficients, only M 
complex weights mc are determined. To ensure stability, the number, M, of weights must 
be less than the number ( ) 2/1+N complex filter coefficients. Therefore, only the first M 
even derivatives of the desired and the actual Fourier transforms are matched and the 
remaining ( )1 / 2N M+ − degrees of freedom are used to ensure stability. To 
determine mc , we begin with the Fourier transform of the extrapolation filter 

( ) ( ) ( )
( )

( ) ( )
1 / 21 1

0 0
0 0 0

22 2 cos cos ,
NM M

m m n m m
m n m

mnH k c kn c B k
N
πδ δ

−− −

= = =

⎛ ⎞= − − =⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (14) 

where 

 

 ( ) ( ) ( )
( )

( )
1 / 2

0 0
0

22 2 cos cos
N

m m n
n

mnB k kn
N
πδ δ

−

=

⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

∑   (15) 

are the Fourier transformed basis functions. By matching the thl even derivative at 0=k , 
we obtain the linear equation: 
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which is a system of linear equations that can be solved to determine mc . Then mc  is used 
in Equation 14 to obtain ( )kH , which can be transformed to nh by applying inverse 
Fourier transforms.  

Stabilizing the Hale’s extrapolator 
To implement and investigate Hale’s method, a subroutine was written to design an 

extrapolation filter for a given filter length, frequency, and velocity. As a calibration test 
for the subroutine, some of the key figures in Hale’s paper were reproduced with the 
same parameters. Figure 2 shows the amplitude spectrum of 

• the desired transform, ( )kD  (blue), 

• the extrapolation filter based on the conventional Taylor series approach 
(red),  

• and the extrapolation filter, ( )kH , based on Hale’s approach (green). 

Figure 2 shows that the conventional Taylor series filter will have amplitudes greater 
than one for the evanescent wavenumbers. Applying this filter recursively will cause all 
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amplitudes greater than one to grow exponentially as the wavefield is extrapolated into 
the subsurface. On the other hand, Hale’s extrapolation filter is stable for all evanescent 
wavenumbers. This means that these amplitudes will exponentially decay when applying 
the extrapolation filter recursively. 

In order to implement Hale’s extrapolator, we have to specify M terms to match the 
terms in the truncated Taylor’s series of the desired transform such that  

 

FIG 2. Amplitude spectra of the exact, truncated Taylor series, and Hale operators. This was 
calculated for the normalized frequency: / / 2x vω π∆ =  and zx ∆=∆ =10 m. Note that 
wavenumbers greater than / 2π  (see the dashed line) correspond to evanescent waves.    

 M N≤  (17) 

and 

 (k) 1.H ≤  (18) 

There is no direct formula for choosing the optimum M to ensure stability. Further, 
choosing a constant M value will cause some normalized frequencies to be unstable 
(Figure 3).  

To make this filter stable for all normalized frequencies, different normalized 
frequencies should have different M values. By breaking the normalized frequencies into 
small ranges and assigning a different M for each range, stability was ensured for all 
normalized frequencies. These higher normalized frequencies will be assigned larger M 
values than the low ones.  Figure 4 shows that when varying the M value with the 
normalized frequencies, the filter exhibits stability for all normalized frequencies. 
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Figure 5 shows a comparison between the amplitude and phase spectra of the desired 
transform with Hale’s filter. Note that the amplitude of the desired transform has a sharp 
drop at the evanescent boundary. On the other hand, this boundary is tapered in Hale’s 
filter. Furthermore, there is a sharp decrease in amplitude when the normalized 
wavenumber is just greater than the normalized frequency. Also, the decrease in 
amplitude occurs smoothly and starts before the evanescent boundary in Hale’s filter.  

 

FIG 3. Amplitude spectra of the Fourier transforms of Hale’s filters for different normalized 
frequencies with constant M. Note that it is unstable for some normalized frequencies. The 
frequencies are from 10-100 Hz incrementing by 10 Hz, v=2000 m/s, dx=dz=10 m, and M=5. 

 

FIG 4. Amplitude spectra of the Fourier transform of Hale’s filters for different normalized 
frequencies after varying M with the normalized frequencies. The frequencies are from 10-100 Hz 
incrementing by 10 Hz, v=2000 m/s, 10x z m∆ = ∆ = , and M=1-8 depending on the value of 
2* * * /pi f x v∆ . For small values of 2* * * /pi f x v∆ , M tends to be small and large for big 
values of 2* * * /pi f x v∆ . 

In Figure 5, the phases of the desired transform and Hale’s filter are quite similar in 
the non-evanescent region. In fact, the similarity increases as we move away from the 
boundary and decreases as we near the boundary. In the evanescent region, they are 
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totally different. Furthermore, this discrepancy occurs before the start of evanescent 
region.  

 

Amplitude Spectrum   Phase Spectrum 

          

Amplitude Spectrum   Phase Spectrum 

  

FIG 5. Phase and amplitude spectra of the Fourier transforms of the desired transform (top) and 
Hale’s extrapolation operators. This is for a constant velocity medium of 2000 m/s, x z∆ = ∆ = 10,  
and a sample rate of 4 ms.  

 

 

Impulse response of Hale’s extrapolator 

Figure 6 shows four non-zero points in the time domain. Using Hale’s extrapolation 
operator with 19-coefficients, the four points in the time domain were migrated into four 
semicircles in the depth domain (Figure 7). However, note that the steep dips were 
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attenuated due to a low number of coefficients. A longer operator is needed to migrate 
steeper dips. This impulse response test shows that the Hale’s extrapolator is fairly stable 
at least for this depth range. 

 

FIG 6. Three non-zero points in the time domain. This is for a constant velocity medium of 2000 
m/s, x z∆ = ∆ = 10, and a sample rate of 4 ms.  

 

 
FIG 7. Impulse responses after migration using Hale’s extrapolation filter with 19-coefficients. 

 

 

Poststack migration of Marmousi data using Hale’s extrapolator 
To investigate the behavior of Hale’s extrapolator in the presence of lateral velocity 

variations, the Marmousi dataset is used. The Marmousi data have strong lateral velocity 
variations and steeply dipping events. Despite the fact that poststack migration is not 
enough to place events in their correct lateral position, a poststack migration test shows 
how Hale’s extrapolator behaves in the presence of lateral velocity variations and steep 
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dipping events. Figure 8.a shows the velocity model and Figure 8.b shows the unmigrated 
time section. Figure 8.c shows the migration result using Hale’s extrapolator. Whilst 
Hale’s extrapolator could handle the lateral velocity variation, the steeply dipping events 
were not properly migrated. Also, the image shows that the extrapolator is fairly stable.  

 

      (a) 
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(b) 

 

(c) 

 

FIG 8. (a) The velocity model, (b) the unmigrated time section, and (c) the migrated section using 
Hale’s extrapolator with 19 coefficients. 
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INVESTIGATING DIFFERENT PRESTACK MIGRATION METHODS 
A brief review of different constant velocity prestack depth migration approaches is 

presented here. The different investigated methods are: 

• prestack Kirchhoff depth migration, 

• prestack depth migration with Claerbout’s imaging conditions, which are: 

 deconvolution imaging condition, 

 and cross-correlation imaging condition, 

• and prestack depth migration with time excitation imaging condition. 

Prestack Kirchhoff Depth Migration 
To perform a constant velocity prestack Kirchhoff migration, the following equation 

can be used 
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Figure 9 shows a symmetric split spread shot gather. A shot was fired above a 
horizontal reflector at depth 500 m. The receiver spacing is 10 m and the sample rate of 4 
ms.  

 

 

FIG 9. A Shot gather with a flat horizontal reflector where v=2000 m/s and the depth of the 
reflector is 500 m. 

Figure 10 shows the image after using prestack Kirchhoff depth migration. The 
reflection was imaged at the correct depth. But the image is contaminated with artifacts.  

 

FIG 10. After prestack Kirchhoff depth migration. Reflector was imaged to the correct depth at 
500 m but the image is contaminated with migration artifacts.  

The artifacts that are seen on the image in Figure 10 are due to the truncation of the 
summation hyperbolas. In order to avoid the creation of any artifacts during migration, 
the sides of the summation hyperbolas must traverse the band limited data (Figure 11). If 
the flank of the summation hyperbola completely crosses the band limited data zone, a 
proper cancellation of amplitudes will occur. On the contrary, if any flank of the 
summation hyperbola truncates inside the band limited data zone, some amplitude will be 
picked up and mapped to the wrong depth creating an artifact (Figure 11).  
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FIG 11. To avoid artifacts, the summation hyperbolas must completely traverse the band limited 
data (2T). If the summation hyperbolas truncate inside the band limited data, an artifact will be 
created. 

One way to minimize the effects of artifacts is to apply a taper prior to summation. 
From this equation  
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  (20) 

the summation is over dx  to create one trace on the image space. Applying a taper prior 
to the summation can weaken the artifacts. Figure 12 shows a comparison between un-
tapered and tapered image gathers. These image gathers are different than the image 
gathers obtained from migrating different shots and known in literature as CIG (common 
image gather).  

 

Shot travel time to a depth level 

Depth point to receivers 
Summation Hyperbolas 
delayed by shot travel Time. 
Note that this hyperbola 
traverses the band limited 
data zone, but will truncate at 
the edge creating an artifact.  
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FIG 12. Image gathers without a taper (on the left) and with a taper on the right.  

Figure 13 shows the result after applying a taper prior to summing the image gathers. 
The taper was very effective in minimizing the effect of the artifacts. The image obtained 
from the tapered gathers has fewer artifacts. This is one way to eliminate migration 
artifacts. 

 

 

FIG 13. Applying a taper to the image gathers has minimized the effects of the artifacts and 
improved the image. 

Prestack depth migration with Claerbout’s imaging condition  
In this section, a brief review of the prestack depth migration approach using the 

reflector mapping concept is presented. This review will give some insight about these 
methods and which ones preserve reflector amplitudes. The principle of reflector 
mapping was first introduced by Claerbout in 1971. The basic principle of reflector 
mapping is that reflectors exist in the subsurface when the first arrival of the downgoing 
wave is time coincident with the upgoing wave. This can give the correct phase but not 
the amplitude at the reflector. To get the correct amplitude at the reflector, Claerbout 
defines it as the ratio of the upgoing and downgoing wavefields at the subsurface imaging 
location. 

Un-Tapered Tapered 

Un-Tapered Tapered 
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Geiger (2001) derived Claerbout’s reflector mapping as a reformulation of the 
Kirchhoff integral. Under ideal conditions (no noise), Geiger (2001) derived  
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which can estimate a true reflectivity map based on Claerbout’s imaging condition and 
the deconvolution imaging condition is defined where ( ), ,S G sP x x ω− is the upward 
extrapolated wavefield that was recorded at the surface for  a subsurface location, Gx and 

( ), ,i G sP x x ω+ is the downward modeled source from the surface to Gx . 

To avoid dividing by zero, Claerbout suggested multiplying Equation 21 by the 
conjugate of the incident wavefield such that 
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 Now, the denominator is real and does not affect the phase it can be eliminated, 
leading to the cross-correlation imaging condition 
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where ( ), ,S G sP x x ω− is the extrapolated wavefield that was recorded at the surface for  a 

subsurface location, Gx and ( ), ,i G sP x x ω+ is the modeled source from the surface to Gx . 
This should give the correct phase but not the amplitude, as we shall see. For this project, 
a monopole 2-D Green function will be used as the incident wavefield  
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note that the incident wavefield has a geometrical spreading term, phase rotation, and 
frequency filter. 
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Prestack depth migration with time excitation imaging condition 
Inserting Equation 25 into Equation 23 and omitting the amplitude, phase rotation, and 

frequency filter terms results in the shot excitation method  
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θ ω ω
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∞
−−

−∞
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this corresponds to a delayed delta function in the time domain. This will give the correct 
phase of the reflector but not the amplitude. 

 

Which method is a true amplitude prestack depth migration? 

These three imaging conditions will give the correct phase but each will treat the 
amplitude in a different way. The next example illustrates that point. 

Let’s assume that we have four reflectors in the subsurface at 200 m, 400 m, 800 m, 
and 1600 m. Assume we fire a shot over that model and the rays are normally incident to 
the reflectors (Figure 14). Let’s also assume that we are dealing with 3-D data and we 
have the 3-D Green function as the incident wavefield  
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FIG 14. A shot was fired over four reflectors. We will assume that the rays are normally incident 
to each reflector. Table 1 will show the amplitude changes at each reflector. 

Surface 

 

200 m 

400 m 

 

800 m 

 

 

 

1600 m 
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Table 1.  Summary of the amplitude changes at each reflector and the difference among the three 
imaging conditions: deconvolution, cross-correlation, and time excitation imaging conditions. This 
table assumes that there is no transmission loss and the R is the same for each reflector. 

 U  −U  +D  ++D  +− DU /  ( )** +− DU  ( )** ++− DU  

200 m RA
 

RA2
 

A2
 

1 R 24RA  RA2
 

400 m  

2
AR  

 

RA
 

 

A  

 

1 

 

R 

 

2RA  

 

RA
 

800 m 

4
AR  

2
AR  

2
A

 
1 R 

4

2RA
 2

AR  

1600 m 

8
AR  

4
AR  

4
A

 
1 R 

16

2RA
 4

AR  

( )( )4004
1

π
=A , 

R=reflection coefficient, 

U  = recorded wavefield at the geophones, 

−U = extrapolated wavefield to the reflector, 

+D = incident wavefield at the reflector by using a 2-D Green function, 

++D = incident wavefield at the reflector by using a delta function (excitation time 
imaging condition), 

+− DU / = deconvolution imaging condition, 

( )** +− DU = cross-correlation imaging condition, 

( )** ++− DU = excitation time imaging condition. 
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• From Table 1, we can see that only the deconvolution imaging condition will be 
able to give the correct amplitude of the reflector at each interface. On the other 
hand, the others will give the correct phase but not the amplitude. Thus, the 
deconvolution imaging condition is a true amplitude prestack depth migration. 
Figure 15 shows true amplitude shot gather with seven horizontal reflectors. Note 
how their amplitudes weaken with depth. 

 

 

FIG 15. A shot gather with true amplitudes. Note how reflections weaken with depth. 

This model will be migrated with  

• prestack Kirchhoff depth migration, 

• prestack depth migration with Claerbout’s imaging conditions: 

 deconvolution imaging condition, 

 cross-correlation imaging condition, 

• prestack depth migration with the time excitation imaging condition. 

Figure 16 shows the migration result. Only the prestack Kirchhoff and the depth 
migration with the deconvolution imaging condition were able to give the correct 
amplitude for each reflector. 
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FIG 16. Migration of the shot gather in Figure 15 with Kirchhoff migration and the three imaging 
conditions. 

Prestack Kirchhoff depth migration 

 
Prestack depth migration with 

deconvolution imaging condition 

 
Prestack depth migration with cross-

correlation imaging condition 

 
Prestack depth migration with time 

excitation imaging condition 
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CONCLUSIONS 
In this report, a brief review of Hale’s extrapolator was shown. Hale’s extrapolator is 

not stable when the number of terms matching the terms in the truncated Taylor’s series 
of the desired transform, M, is kept fixed for all normalized frequencies. The only way to 
stabilize the extrapolator is to vary M with the value of the normalized frequency. Higher 
normalized frequencies should be assigned higher M values than the lower ones. The 
difficulty with that is that there is not a direct formula to do compute M, and assigning M 
values is based on trial and error. This is one of the disadvantages of this extrapolator. 

On the other hand, the poststack migration of the Marmousi dataset using Hale’s 
extrapolator shows that it can handle lateral velocity variations but not the steeply 
dipping events.  

Also in this report, different migration methods using Hale’s extrapolator were 
investigated, and not all of them could preserve the reflector’s amplitude. Only the 
prestack Kirchhoff depth migration and prestack depth migration using Hale’s 
extrapolator with the deconvolution imaging condition were true amplitude methods.  
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